SANGST1ER"SVATHRAL PHMOSDPIY
PAMY, 1 , E

$$
\text { PARY, } 1 \text {, }
$$

$$
\begin{aligned}
& \frac{1}{2}=\frac{1}{36}=\frac{5}{4 i 2} \cdot 40^{00} \\
& f_{4}=\frac{5}{121}, \frac{5}{-52} \text { earity } \\
& \because \frac{b}{2 \eta}=\frac{82}{32} \\
& +3 x-20+1-1 \\
& \begin{array}{l}
\text { 2. }\left(\frac{1}{5^{2}}-\frac{51}{81}\right. \\
\frac{50}{4}
\end{array} \\
& \frac{i \alpha}{2 \pi}=
\end{aligned}
$$

LOVELL'S SERIES OF SCHOOL BOOKS.

NATURAL PHILOSOPHY,

PART I,
including

STATICS, HYDROSTATICS, PNEUMATICS, DYNAMICS, HYDRODYNAMICS, THE GENERAL THEORY OF UNDULATIONS, THE SCIENCE OF SOUND, THE MECHANICAL THEORY OF MUSIC, ETC.
designed

FOR THE USE OF NORMAL AND GRAMMAR SCHOOLS, AND THE HGHER CLASSES IN COMMON SCHOOLS.

by Joil. Iierbert sivgiter, M.A., M.D.,

MATEEMATICALMASTER AND LECTURER IN CHEMIBTRT AND NATURAL PELLOSOPHY IN THE NORMAL ECHOOL FOR UPPER CANADA.
fffontreal:
PRINTED AND PUBLISHED BY JOHN LOVELL; any for sale at the boor stores.

$$
1867 .
$$

Entered, according to the Ast of the Provincial Parliament, in the year one thousand eight hundred and sixty, by Juns Lovill, in the Office of the Registrar of the Province of Canada.

PREFACE TO FIRST EDITION.

The following Treatise was originally designed to serve as a handbook or companion to the lectures on Natural Pbilosophy, delivered to the junior division in the Normal School. Although numerous text-books on the subject were already in existence, it was found that they were either too abstruse and technical for beginners, or too general and superficial to be of much practical use. The aim of the present little work is to occupy a position between these extremes-to present the leading facts of the science in a form so concise as to be readily remembered, and at the same time to give that thorough drilling upon the principles which is absolutely essential to their fall comprehension.

As a hand-book to lectures fully illustrated by apparatus, it was not necessary to introduce many wood-cuts, and accordingly they have been given only where absolutely required.

The chief peculiarity of this book consists in the introduction, to a large exteut, of problems calculated to impart that intimate and practical knowledge of the facts and principles of Mecbanical Science, without which the student's information on the subject is, comparatively speaking, useless. How frequently do we meet with a pupil who has read carefully through one of the common text books on Natural Philosophy without acquiring any very clear or definite ideas of the science! And what should we say of a
work professing to teach the principles of arithmetic or algebra by mere rules and explanations, without an appropriate selection of examples and problems? The excreises are therefore deemed an important feature of the following pages, and it is thought that the science may be taught by their aid more thoroughly and in less time than otherwise.

Toronto, January, 1860.

PREFACE TO SECOND EDITION.

The proof sheets of this edition have undergone the most attentive revision at the hands of the Author. He has added a section on the Turbine Water Wheel, a chapter on the Theory of Uudulations, another on the Science of Sound, and a third on the Mechanical Theory of Music. The Author trusts that these additions will render the work more serviceable and more deserving of that flattering reception which has been already accorded to it.

Toronto, February, 1861.

CONTENTS.

CHAPTER I.

PAGB

General Subdivisions of Natural Science, 9
Subdivisions of Natural Philosophy, 10
Properties of Matter, 10
Table of Tenacity, 13
Attraction, 13
Problems in Attraction of Gravity, 14
CHAPTER II.
Subdivisions of the Science of General Mechanics, 15
Statics, 15
Parallelogram of Forces, 17
Parallel Forces, 18
Centre of Gravity, 19
CHAPTER III.
Mechanical Powers, 20
Virtual Velocities, 20
The Lever, 22
The Compound Lever, 25
The Wheel and Axle,. 26
The Differential Wheel and Asle, 28
Wheel Work, 30
The Pulley, 33
The Inclined Plane, 38
The Wedge, 40
The Screw, 41
The Differential Screw, 4.4
The Endless Screw, 45
Friction, 47
Table of Friction, 48
JHAPTER IV.
Unit of work, 49
Work of different agents, 50
Work on a horizontal plane,. 53
Table of traction of a horse, 54
PAGY
Work of atmospheric resistance, 57
Work on an inclined plane, 59
Modulus of machines, C4
Table of moduli, 65
Work of water, 65
The Steam Engine, 65
Work of the Steam Engine, C8
Source of work in the Steam Engine, 71
Pambour's Experimental Table, 72
CHAPTER V.
IIydrostatics, 76
Liquid pressure, 76
Weight of cubic inch, gallon, and cubic foot of water, 77
Pressure against a vertical or inclined surface, 78
Pressure against a vertical or inclined surface at a given depth, 81
Bramah's Iydrostatic Press, 84
Hydurostatic Paradox, 87
Hydrostatic Bellows, 87
Specific gravity, 88
To find the specific gravity of a solid, 89
To find the specific gravity of a liquid, 91
To find the specific gravity of a gas,. 92
Table of specific gravitics, 93
To find the weight of a given mass of any substance, 93
To find the mass of a given weight of any substance, 94
Theory of Flotation, 95
CHAPTER VI.
Pncumatics, 9.5
Composition of a tmospheric air, 96
Gaseous diffusion, 96
Aqueous vapor, 97
Physical properties of atmospheric air, 97
Weight of air, 98
Density of air, 98
CONTENTS.
PAGE
Pressure of air, 99
Mariotte's Law, 101
The Air Pump, 101
Pressure and elasticity of air, 103
The Barometer, 104
Use of the Barometer as a weather glass, 105
To ascertain the height of mountains, \&c., by the barome- ter, 106
The Common pamp, 108
The Forcing pump, 108
The Syphon, 108
CHAPTER VII.
Dynamics, 109
Momentum, 110
Laws of motion, 114
Reflected motion, 114
Descent of bodies freely throngh space, 115
Analysis of the motion of a falling body, 116
Table of formulas for descent of bodies through space, 117
Problems, 118
Descent on inclined planes, 124
Descent in curves, 125
Table of formulas for descent on inclined planes, 126
Problems, 127
Projectiles, 129
Parabolic Theory, 130
Jodern Parabolic Theory, 131
Velocity of shot and shell, 133
Circular motion, 134
Centrifugal force, 134
Problems, 135
Accumulated work, 137
The Pendulum, 139
The centres of suspersion and oscillation, 140
Laws of the oscillation of the pendulum, 140
Table of lengths of sccond's pendulums, 141
Problems, 142

CIIAPTER VIII.

PAGE
IIydrodynamics, 146
Torricelli's theorem, 146
Discharge of water through an orifice, 146
The vena contracta, 147
Effect of Adjutages, 147
Problems 148
The random of spouting fluids, 150
Velocity of water flowing in a pipe or channel, 150
Upright water-wheels, 151
To find the horse power of water-wheels, 151
The Turbine water-wheel,. 153
CHAPTER IX.
Theory of Uudulations,. 155
Vibrations of strings, 156
Vibrations of rods, 157
Vibrations of plates, 158
Yodal figures, 159
Undulations in liquids, 159
Undulations in elastic fluids, 161
CHAPTER X.
Acoustics, 161
V elocity of sound, 162
Echoes, 165
Whispering Galleries, 166
CLAPTER XI.
Mechanical Theory of Music, 167
CIIAPTER XII.
The Organs of Voice, 177
Tie Organs of IIcaring, 181
Miscellaneous I'roblems, 186
Examination Papcrs, 195
Answers to Examination Papers, 203
Examination Questions, 205

NATURAL PHILOSOPHY.

CHAPTER I.

SUBDIVISIONS—GENERAL PROPERTIES OF MATTERATTRACTION.

1. Natural Science, in its widest sense, embraces the study of all created objects and beings, and the laws by which they are governed.
2. Natural objects are divided into two great classes, viz., organic and inorganic, the former being distinguished from the latter by the exhibition of vital power or life.
3. Organic existences are separated into animals and vegetables, the former distinguished from the latter by the possession of sensibility and volition.
4. The different subdivisions of natural science and their objects are as follows :-
Zoology describes and classifies animals.
Botany teaches the classitication, use, habits, structure, §c., of plants.

Mineralogy describes and classifies the various mineral constituents of the earth's crust.

Astronomy investigates the laws, \&e., of celestial phenomena.
Geology has for its object the description, \&e., of the crust of the earth.

Chemistry teaches us how to unite two or more elementary lodies into one compound, or how to decompose compound lodies into their simple elements.

Natural Philosophy or Physies has for its object the investigation of the general properties of ail bodies, and the natural lazs by which they are regulated.
5. Natural Philosophy is divided into-
I. Gencral Mechanies-including Statics, Hydrostaties, Dynamies, Hydrodynamics, and Pueumatics.
II. Heat.
III. Light-including Perspective, Catoptrics, Dioptrics, Chromatics, Physical Optics, Polarization, and ActinoChemistry.
IV. Electricity-including Statical Electricity, Galvanism, Magnetism, Thermo-Electricity, and Animal Electricity.
V. Aeousties.

pROPERTIES OF MATtER.

6. Matter exists in three separate forms,-I. Solid; II. Liquid; and III. Gascous.

Note.-The same body may exist in all three forms, as is the case with vater, mercury, sulphur, \&c. The amount of heat or caloric present determines the form of tho body-if heat bo applled, tho attraction of cohesion existing among the particles is gradually overcome, and the body passes from a solid to a liquid, and from a liquid to a gas. If heat be abstracted, tho attraction of cohesion gradually draws the particles into closer proximity, and the body passes from a gas to a liquid, and finally from a liquid to a solid. Hence heat and cohesion are called antagonistic forces.
7. Matter is distinguished by the possession of certain distinctive properties.
8. The properties of matter are divided into 1st. Essential Propertics. 2nd. Accessory Properties.
9. The essential properties of matter are those without which matter could not possibly exist.
10. The essential properties of matter are Ectension, Impenetrability, Divisilility, Indestructibility, Porosity, Compressibility, Incrtia, and Elasticity.
11. Extension implies that every body must fill a certain portion of space.
Note.-The Dimensions of Extension are length, breadth, and thichness.
12. Impenetrability implies that no two bodies can oczupy the same portion of space at the same time.

Note-Examples of the impenctrability of mattor will readily suggest themselves. Among the more common may be mentioned the impossibility of filling a bottlo with water until tho air is displaced-the fact that wheu tho hand is plunged into a vessel filled with water, a portion of the liquill overflows, d.c. All instances of the apparent penetrability of matter are merely examples ofdisplacoments. Thus, when a nail is driven into a piece of wood, it displaces the particles of wood, driving them eloser together.
13. Divisilility is the capability of being continually divided and subdivided, and is an cssential property only of masses of matter.

Note 1.-The ultimate particles of matter ; i. e., those inconceivably minute molecules which cannot be further subdivided, are termed atoms. (Gir. a "not" and temno " to cut;" i. e., that which cannot be cut or divided.)

Note 2.-The following may be given as examples of the extreme divisibility of matter:-
I. Gold leat is hammered so thin that 300,000 leaves placed one on another, and pressed so as to exclude the air, measure but one inch in thickness.
II. Wollaston's micrometric wire is so fine that 30,000 wires placed side by side, measure but one inch across- 150 of these wires bound together do not exceed tho diameter of a filament of raw silk, 1 mile of the wire weighs but a grain, and 7 ounces would reach from Toronto to England.
III. Insects' wings are some of them so fine that they do not exceed the वृत्वरणग of an inch in thickness.
IV. The thinnest part of a soap bubble is only the $2,500,000$ th part of an inch in thickness.
V. Blood corpuscles are so small that it requires 50,000 corpuscles of hnman blood, or 800,000 corpuscles of the blood of the musk-deer to cover the head of a common pin. Yet these corpuscles are compound bedies, and muy be resolved, by means of chemistry, into their simple elements.
VI. There are animalcules so minute that millions of them heaped together do not equal the bulk of a single grain of sand, and thousands might swim side by side through the cye of the finest cambric needle. Yet theso ereatures possess, in many cases, complicated organs of locomotion, outrition, \&ic.
VII. At Bilin, in Bohemia, a huge mountain consists entirely of shells, 30 minute, that a cubic inch coutains 41 billions-a number so vast that zounting as rapidly as possible day and night without intermission, it would require 780 years to enumerate it.

YIII. The filament of the spider's web is so fine that 4 miles of it weigh only about a grain-yet this thread is formed of about 6000 filaments united together, \&c., \&c.

14. Indestructilility implies that it is as impossible for

 a finite creature to annihilate as to create matter.Note.--We can change the form of matter at pleasure, but we cannot destroy it. When fuel, for example, is burned, not a particle is lost, as is proved by the fact that if we collect all the products of the combustion ; i.e., tho smoke, soot, ashes, \&c., and weigh them, we shall find their aggregate weight exactly equal to that of the wood or coal consumed. We may sately conclude that there is not a single atom of matter, more on less, attached to our earth now than at the time of Adam.
15. Porosity implies that the constituent atoms of matter do not touch each other, but are separated by small intervening spaces called pores.

Note.-The atoms even of the densest bodles aro mueh smaller than the spaces which separate them. Newton regards them as infinitely smetler, as boing in fact mere mathematical points ; and Sir J. Hersehel asks why tho particles of a solid may not bo as thinly distributed through the space it oecupies as the stars that composo a nebula, and ho compares a riy of light penetrating glass to a bird threading tho mazes of a torest.
18. Compressibility implies the eapability a body possesses of being forced into a smaller bulk without any diminution in the quantity of matter it contains.

Note.-Since all matter is porous, it follows, as a necessary consequence, that alt matter must bo compressible.
17. Incrtia means passiveness or inactivity, or that matter is incapable of clanging its state, either from rest to motion or from motion to rest.

Note.- Bodies moving on or near the surface of the earth sonn come to a state of rest, unless somo constant propelling force is applied to them. This is owing to tho ection of certain resisting forces, as the resistance of the atmospliere, friction, and the attraction of gravity.
18. Elasticity is the capability which all bodies possess, more or less, of recovering their former dimensions after c mpression; or after having, for a time, been compelled to a:sume some other form.

Note.-As applied to solids, elasticity is divided Into-

1. Elasticity of compression,
2. Elasticity of tension,
3. Elastleity of flexure, and
4. Llasticlty of torsion.

Some bodies, as putty, seeu to possess very littlo elasticity. In glass all four kinds appear to exist almost perfect within certain limits-no force however great or long continued will cause glass to tako a set sy it is tertuel.
19. The uccessory properties of matter are those which merely serve to distinguish one kind of matter from another.
20. The accessory properties of matter are Jurdness, softuess, flexilility, brittleness, transparcucy, opacity, mulleability, ductility, tenacity, \&c.
21. Mullcability expresses the susceptibility, possessed by certain kinds of matter, of being hammercel out into thin slicets.
Note.-The most malleable mefals are gold, silver, iron, copper, and tin.
22. Ductility is susceptibility of being draun out inte fine wire.
Note.-The most ductilo melals are platinum, gold, iron, and copper.
23. Tenacity or toughness implics that a certain force is necessary to pull the particles of a body asunder.

Note.-The following table shows the relative tenacity of different substances. The first column shows the number of pounds weight required to tear asunder a prism of each substance having a sectional area of one square inch, and the second column gives the length of the rod of any given diamcter, which, if suspended, would be torn asunder by its own weight:-

TABLE OF TENACITY.

Weight in pounds. (Scetion of rod lisq. in.

Metals.
Cast lead.
Cast tin,
lellowrass,
Cast copper,
Cast iron,
English malleable iron,
Swedish do.
Cast steel,

Pine,
Oak,
Beech,
Ash,

1824
4736
4736
17958
19072
$19096{ }^{\circ}$
55872
72064
134256
Woods.

9540	40500
9720	35800
11880	32900
12225	3890
14130	42080

ATTRACTION.

24. Attraction is that power in virtue of which particles and masses of matter are drawn towards each other.
25. Attraction is of several kinds, viz:
I. Attraction of Gravity.
II. Attraction of Cohesion.
III. Attraction of Adhesion.
IV. Capillary Attraction.
V. Electrical Attraction.
VI. Magnetic Attraction.

- VII. Chemical Attraction.

26. Attraction of Gravity (Lat. gravitas, "weight") is that force by which masses of matter tend to approach each other. It is sometimes spoken of as gravitation, or when applied to the force by which bodies are drawn towards the centre of the carth, terrestrial gravity.
27. The intensity of the force of gravity varies directly as the mass of the bodies, and inversely as the square of their distance apart.

Note-If wo suppose two spheres of any kind of matter, lead, for example, to be placed in presenco of oach other and under such conditions that beng themsolves free to move in any direetion they are nntirely uninfluenced by any other bodies or clrcumstances, they will approach each othor, and;-
1st. If their masses aro equal, their relocities will be equal.
2ud. If one contain twice as sanch matter as the other, its velocity will be only half as great as that of the other.
3rd. If one bo infinitely great in comparison with the other, its motion will be influitely small in comparison with that of tho other : and 4th. Tho more nearly they approach each other, the more rapid will their motiou become:-
28. By saying the intensity of the forec of gravitation varies inverscly as the square of the distance between the attracting bodies, we merely mean that if the attractive force exerted between two bodies at any given distance apart be represented by the unit 1, then, if the distance, apart be doubled, the force of attraction will be reduced to $\frac{1}{4}$ of what it was before; if the distance between the bodies be inereased to three times what it was, the foree of gravity will be deereased 9 times, or will be only $\frac{1}{\theta}$ of what it was, de.

Example 1.-If a body weigh 981 lbs: at the surface of the earth, what will it weigh 8000 miles from the surface?

sOLUTION.

Here sinco the distance of the body in the first case is 4000 miles from the centre of the earth and in the latter case 12000 (i. c. $8000+4000$) tho distance apart hay been trebled.

Then weight $=\frac{981}{3^{2}}=\frac{981}{9}=109 \mathrm{lbs}$. Ans.
Example 2.-The moon is 240,000 miles from the (centre of) earth, and is attracted to the earth by a certain force. How much greater would this foree become if the moon were at the surface of the earth?

$$
\text { Here } \frac{240000}{\text { Earth's radius }}=\frac{40}{240000}=60 \text {, and } 60^{2}=3000 \text { times. Ans. }
$$

3. If a mass of iron weigh 6700 lbs . at the surface of the earth, how much would it weigh at the distance of 12,000 miles from the surfaco? Ans. 418 lbs,
4. If a piece of copper weigh 2 lbs , at the distance of 36,000 miles from the earth's surface, what would it weigh at the surface of the earth?

Ans. 900 lbs .
29. Attraction of Colhesion is that force by which the constituent particles of the same body are held together.

Nore.-The attraction of cohesion acts only at iusensible distances; i. e., at distances su minute as to bo incapable of measurement. The attraction of gravity, on the other hand, acts at sensible distances.
30. Attraction of Adhesion is that force by which the partieles of dissimilar bodies adhere or stick together.
31. Capillary Attraction (Lat. capilla, "a hair ") is the force by which fluids rise abuve their level in confined situations, such as small tubes, the interstices of porous substances, \&c.

Note-It is by capillary attraction that oil and burning fluid, melted tallow, \&c., rise up the wick of a lamp or candle.
32. Electrical Attraction is the force developed by friction on certain substances, as glass, amber, sealing-wax, \&c.
33. Magnetic Attraction is the force by which iron, nickel, \&c., are drawn to the loadstone.
34. Chenical Attraction, or Chemical Affinity, is the force by which two or more dissimilar bodies unite so as to form a compound essentially different in its appearance and properties from either of its constituents.
Thus Potash and Grease unite to form soap-Sulphur and Jercury unite to form Vermillion, \&c.

CHAPTER II.
 STATICS.

35. The Science of general mechanics (Greek mèchanè, " a machine ") has for its object the investigation of the action of forces on matter whether they tend to keep it at rest or to sct it in motion.
36. The Science of general mechanies is usually subdivided as follows:-
I. Statics, (Greek statos, "standing") or the science by which the conditions of the equitibrium of solids are determined.
II. Hydrostatics, (Greek hùdor, "water," and statos, "standing,") or the science by which the conditions of the equilibrium of liquids are determined.
III. Drnamics, (Greek dumamis, "force") or the science by which the laws that determine the motions of solids are investigated.
IV. Hydrodysamics (Greek Tiulor and dinamis) or tie science by which the laws that determine the motions of liquids are investigrated.
V. Pnedmatics (Greck pneuma, "air," and stalos, "standing,") or Pneuma-staties, the science by which the conditions of the equilibrium of clastic fluids, as atmospheric air, are investigated. Pncumatics may be regarded as a branch of Hydrostaties.
37. A body is said to be in equilibrium when the forces which act upon it mutually counterbalance each other or are counterbalaneed by some passive force or resistance.
38. Forces that are balanced so as to produce rest are called statical forces or pressures, to distinguish them from moving, deflccting, accelerating or retarding forc's.
39. A foree has three elements, viz., magnitude, direction, and point of application.
40. A force may be represented either by saying it is equal to a certain number of lbs., oz., \&ce., or by a line of definite length. A line has the advantage of completely defining a force in all its three elements, while a number can merely represent its magnitude.
41. Whatever number of forces may act upon one point of a body, and whatever their direction, they can impart to the body only one single motion in one certain direction.
42. When several forces (termed components) act on a point, tending to produce motion in different directions, they may be incorporated into one force, called the resultunt, which, acting alone, will have the same mechanic.l effect as the several components.
43. When any number of forees act on a point in the same straight line, the resultant is equal to their sum, if they act in the same direction; but if they act in opposite directions, the resultant is equal to the difference between the sum of those acting in one direction and the sum of those acting in the other.
44. If two forecs acting upon the same point be represented in magnitude and direction by two lines drawn through that point, then the resultant of such forees will
be represented in magnitude and direction by the diagonal of the parallelogram, of which these lines are the sides.
45. If any number of forces, A, B, C, D, \&c., act upon the same point in any direction whatever, and in any plane whatever, by first finding the resultant of A and B, then of this resultant and C , then of this resultant and D , and so on, we shall finally arrive at the determination of a single force, which will be mechanically equivalent to, and will therefore be the resultant of the entire system.
46. If the components act in the same plane, the resultant is found by means of what is technically termed the parallelogran of forces, if in different planes by the parallelopiped of forces.
47. The resultant of two forces which act on different points of the same body in parallel lines and in the same direction, is a single force equal to their sum, acting parallel to them, and in the same direction, at an intermediate point, which divides the line joining the tro points of application of the components, in the inverse ratio of the maruitudes of these components.
48. The resultant of two forces, which act on different points of the same body in parallel lines but in opposite directions, is a single force equal to their difference, acting parallel to them and in the direction of the greater force, and at a point beyond the greater of the two forces, so situated, that the point of application of the greater of the two forees divides the distance between the points of application of the smaller force and of the resultant in the inverse ratio of the magnitudes of the smaller foree and of the resultant.
49. When any number of parallel forces, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, fic., act on a body, at any point whatever, and in any planes whatever, by first finding the resultant of A and B, next of this resultant and C , then of this last resultant and D, and so on, we shall finally arrive at the determination of a siugle foree, which will be mechanically equivalent to, and will therefore be the resultant of the entire system of parallel forces.
50. When a system of forees consists of two equal opposite and parallel forces, it is called a Couple.
51. Two equal and parallel forees aeting on a body in contrary directions have a tendency to make that body revolve round an axis perpendieular to a plane passing through the direction of such two parallel and opposite forces; and such tendeney is porportional to the product obtained by multiplying the magnitude of the forecs by the distance between their points of application; and consequently, all couples, in which such products are equal, and which have their planes parallel, are mechanically equivalent, provided their tendency is to turn the body round in the same direction; but if two such couples have a tendeney to turn the body in contrary directions then they have equal and contrary mechanical offects, and would, if simultaneously applied to the same body, keep it in equilibrium.
52. If any two forees, not parallel in direction, but which are in the same plane, be applied at any two points of a body, they admit of a singie resuitant, which may be determined by producing the lines that in magnitude and direction represent the two forees, until they mect in a point, and then applying the principle of the parallelogram of forees.
53. If two forees not parallel in direction act in different planes on two points of a body, they are mechanically equal to the combined action of a couple and of a siogle foree, and their effect will be two-fold-1st, a tendeney to produce revolution; 2nd, a tendency to produce progres. sive motion, so that, if not held in equilibrium by some antagonistic forees, the body will at the same time move forward, and revolve round some determinate axis.
54. The process of incorporating or compounding two or more forces into one, is called the composition of forces ; that of separating or resolving a single force into tiro or more, is termed the resolution of forces.
55. As all the molecules of a body may be considered as ravitating iu parallel lines towards the centre of the earth
-these parallel forces may (Art. 49) be compounded into a single force-which resultant is equal to the sum of all the forces affecting the particles severally; or in other words, to the weight of the mass. The point to which this resultant is applied, is called the Centre of Gravity, and the vertical line in which it acts is termed the Line of Direction.
56. Every dense body or solid mass possesses a centre of gravity.
Note.-The centre of gravity is sometimes called the Centre of Inertia; hecause, if it be moved, the whole mass is moved-it is likewise called the centre of Parallel Forces, for the reason assigned in Art. 55.
57. The Centre of Gravity may be defined to be that point in a body, upon which, if the body be supported, it remains at rest and is balanced in any and every position.
58. If a body, regular or irregular in shape, be freely suspended by a point, the centre of gravity will invariably lie in the line of suspension. If suspended by several points of succession, the lines of suspension will have a common point of intersection, which point will be the centre of gravity of the body.
59. The Centre of Gravity is not necessarily in the body but may be in some adjoining space, as is the case in a ring, a table, an empty box, \&c.
60. The tendency of a body, when free to move in any direction, is always to rest with the centre of gravity as low as possiblc.
61. The Stubility of a body resting in any position is estimated by the magnitude of the force required to disturb or overturn it, and will therefore depend on the position of the centre of gravity with reference to the point of support.
62. A body supported on the centre of gravity is said to be in a condition of Neutral or Indifferent Equilibrium, when the point of support is above the centre of gravity the body is said to be in a condition of Stable Equilibrium, when the point of support is beneath the centre of gravity the body is said to be in a condition of Unstable Equilibrium.
63. The centre of gravity of two separate bodies may be found by dividing the line joining their centres in the inverse ratio of the magnitudes of the bodies.

CHAPTER III.

mectianical powers.
64. The object of all Mechanical contrivances is

1st. To guin power at the expense of velocity ; or 2nd. To gain velocity at the sacrifice of forec.
65. The relative gain and loss of power and velocity is regulated by that principle in philosophy known as the Law of Virtual Velocities, or the Equality of Moments.
86. The law of Virtual Velocity may be thus enunciated :-

If in any machine the power and recight be in squitilirium, and the whole be put in motion, then the pmer multiplied ly the units of distance through which it mowes is rqual to the weight multiplied by the units of distance through which it moves.
Or if $\mathrm{P}=$ power, $\mathrm{W}=$ weight, $\mathrm{S}=$ space mored through by P , ind $\mathrm{s}=$ space through which W moves.
Then $P: W:: s: S$.
Hence $P=\frac{W \times s}{S} ; s=\frac{W \times s}{P}, W=\frac{P \times s}{s}$ and $s=\frac{P \times s}{W}$
Example 5.-A weight of 700 lbs . is moved through 90 feet hy a certain power moving through 5,100 feet. Required the power.

> sOLETION.

Hre $W=700, s=90$ and $S=5100$.
Hence $P=\frac{W \times s}{S}=\frac{700 \times 90}{5100}=12 \frac{6}{7 T}$ lbs. Ans.
Example 6.-A weight of 500 lbs . is mored by a pewer of 20 lbs . ; through how many feet must the power move in order to raise the weight through 16 feet?

SOLUTION.

Here $W=500, P=20$ and $s=16$.
Hence $S=\frac{W \cdot s}{P}=\frac{500 \times 16}{20}=400$ feet. Ans.
Example 7.-A power of 21 lbs moving through 75 feet carries a certain weight through 11 feet. Required the weight.

Here $P=21, S=75$ and $s=11$.

- Then $W=\frac{P \times S}{8}=\frac{21 \times 75}{11}=143_{3}^{2} \mathrm{r}$ lbs. Ans.

Example 8.-A power of 204 lbs. moving through 30 feet is made to move a weight of 1000 lbs . Through how many feet does the weight move?

SOLUTION.

Hero $P=201, W=1000$, and $S=30$.
Then $s=\frac{P+S}{W}=\frac{204 \times 30}{1000}=6 \frac{3}{25} \mathrm{ft}$. Ans.
ExERCISE.
9. A power of 7 lbs is made to move a weight of 1000 lbs . through 11 feet; through how many feet must the power move? Ans. $1571 \frac{3}{7}$ feet.
10. A power of 97 lbs . moving through 86 feet raises a certain weight through ten feet. Required the weight. Ans. $834 \frac{1}{3}$ libs.
11. A weight of 888 lbs . is raised by a power of 60 lbs ; through how many feet must the power move in order to raise the weight through 1 foot?

Ans. $14 \frac{4}{5}$ feet.
12. A certain power moving through 27 feet, is so applied that it carries a weight of 2500 lhs. through 4 feet. Required the power.

Ans. $370 \frac{10}{2}$ lbs.
67. Any contrivance by which, in accordance with the principle of Virtual Velocities, a small force acting through a large space is converted into a great force acting through a small space, or vice versû, is a machine. Machines are cither simple or complex.
68. In the composition of machinery it is usual to speak of six mechanical puwers-more properly termed Mcchanieal elements, or Simple Maehines, viz:-
$\left.\begin{array}{l}\text { The Lever, } \\ \text { The Inelined Plane, } \\ \text { The Pulley and Cord, } \\ \text { The Whedl and Axle, } \\ \text { The Wedge, } \\ \text { The Serew, }\end{array}\right\}$ Secondary Mechanical Elements.
60. In reality, however, there are but two simple meelanieal elements, viz: the Lever and the Inelined Plane. The Wheel and Axle and the Pulley are merely molifieations of the lerer, while the Wedge and the Seretr are both formed from the inclinet planc.
70. In theoretical mechanies levers are assumed to be perfectly rigid and imponderable-cords, ropes and chains are regarded as having neither thickness, stiffuess nor weight, they are assumed to be mere mathematical lints, infinitely flexible and infinitely strong. At first no allowance is made for friction, atmospleric resistance, \&c. After the problem, divested of all these complieating circumstances, has been solved, the result is modified by taking inte consideration the effects of weight, friction, atmospheric resistance, rigidity of cords, flexibility of bars, de.

THE LEVER.

71. The lever is a bar of wood, or iron, movable about a fixed point or pirnt called the Fulerum.
72. Levers are cither Straight or Bent, Simple or Compound.
73. Of simple Straight Levers there are three kinds,the distinction depending upon the relatire positions of the fulerum, the power, and the weight.
74. In levers of the first, class the fulcrum is between the power and the weight.

Fig. 1.
of this kind of lever, we may mention as examples, a puir of *Cissurs, pliers, or puncers, a pumpl:andle, the beam of a pair of ecalez, a cruwbar when used tor prying, \&e.

75. In levers of the second class the weight is between the fulcrum and the power.

Nuterackers, an oar in rowing, a aruwbar when used in lifting, sce., are examples of levers of the second kind.

P Fig. 2.
76. In levers of the third class the power is between the fulcrum and the weight.

A piir of common tongs, sheepshears, the treadle of a foot lathe, a door when opened or closed by placing the hand near the hinge, afford examples of levers of the third class.
Note.-In levers of the first class the power may be either greater or less than the weight; in levers of the secund class, the power is alacays. less than the weight; and in levers of the third class, the power is alreays greater than the weight.
 Hence levers of the third class are ealled losing levets, and are used merely to secure extent of motion. Most of the levers in the animal economy are levers of the third kind.
77. That portion of the lever included between the fulcrum and the weight is termed the arm of the weight: that portion between the fulcrum and the power is termed the arm of the power.

The power and the weight in the lever are in equilibrium when the power is to the weight as the arm of the weight is to the arm of the power.

Or let $\mathrm{P}=$ power, $\mathrm{W}=$ the weight, $\mathrm{A}=$ the arm of the power, an:l $a=$ the arm of the weight.

Then $P: W:: a: \mathcal{A}$.
Hence $P=\frac{W \times a}{A} ; W=\frac{P \times A}{a} ; a=\frac{P \times A}{W} ;$ and $\mathcal{A}=\frac{W \times a}{P}$
Example 13.-The porser-arm of a lever is 11 feet long, the arm of the weight 3 feet long, the weight is 93 lbs . Required the power.

SOLUTION.

Here $W=93, A=11$ and $a=3$.
Then $r=\frac{W_{2} \times a}{d}=\frac{93 \times 3}{11}=2 r_{1}^{4}-\mathrm{lbs}$. Ans.
Example 14.-The power-arm of a lever is 17 feet long, the arin of the weight is 20 feet long, the power is 110 lbs . What is the reight?

SOLETION.

Here $P=110 \mathrm{lbs} . ~ A=17$, and $a=20$.
Then $H^{*}=\frac{P \times A}{a}=\frac{110 \times 17}{20}=93 \frac{1}{2} \mathrm{lbs} . A n s$.

Example 15.-By means of a lever a power of 4 oz , is made to balance a weight of 7 lbs . Avoir. ; the arm of the weight is $2 \frac{1}{2}$ inches long. Required the arm of the power.
sOLUTLON.
Here $P=4 \mathrm{oz} ., W=7 \mathrm{ibs} .,=112 \mathrm{oz}$. , and $a=21$.
Then $A=\frac{W \times a}{P}=\frac{112 \times 2 \frac{1}{2}}{4}=70$ inches. Ans.

EXERCISE.

16. The power-arm of a lever is 16 feet long, the arm of the weight 2 feet long, and the weight is 250 lbs . Required the power.

Ans. $31 \geqslant \mathrm{lbs}$.
17. The power-arm of a lever is 20 fect long, the arm of the weight 70 feet; what power will balance a weight of 5 cwt .?

Ans. $17 \frac{1}{2} \mathrm{cwt}$.
18. The power-arm of a lever is 60 inches long, the arm of the weight 90 inches long, the power is 7 Clbs . Required the weight.

Ans. 50 l lbs.
19. The power-arm of a lever is 17 fect long, the arm of the weight 19 feet; what power will balance a weight of 950 lbs ?

Ans. $1061+\frac{3}{3}$ lbs.
20. The power-arm of a lever is 12 feet long, the power is 10 lbs ., and the weight 75 lbs . Required the length of the arm of the weight.

Ans. 13, feet.
21. Hy means of a lever a power of 12 z lbs . is made to balancir a weight of 93 lbs ; the arm of the weight being $0 \frac{1}{2}$ feet, what is the length of the arm of the power? Ans. $4 \overline{6} \% \mathrm{fl}$.
78. When the power and the weight merely balanee each other, i. e., when no motion is produced, there is no difference between the second and third classes of levers since neither force can be regarded as the mover or the moved. In order to produce motion, one of these force: must prevail, and the lever then belongs to the seenne or third elass, according as the force neurer to or further, irom the fulcrum prevails.
79. If the arms of the lever are curved or bent, their effective lengths must be asecrtained by perpendiculars drawn from the fulerum upon the lines of direction of the power and the weight; the same rule must be adopted when the lever is straight, if the power and wei_ht do mot aet parallel with one another.

THE COMPOUND LEVBR.

80. Two or more simple levers aeting upon one another constitute what is called a Compound Lever or Com-

Fig. 4.

position of Levers. In such a combination the ratio of the power to the weight is compounded of the ratios existing between the several arms of the compound lever.
81. In the compound lever if $W=$ weight, $P=$ power, $a a^{\prime} a^{\prime \prime}$ the arms of the weight, and $A \cdot A^{\prime} A^{\prime \prime}$ the arms of the power.

Then $P: W:: a \times a^{\prime} \times a^{i \prime}: A \times A^{\prime} \times A^{\prime \prime}$
Hence $P=\frac{W \times a \times a^{\prime} \times a^{\prime \prime}}{\mathcal{A} \times \Omega^{\prime} \times A^{\prime \prime}}$ and $W=\frac{P \times \Omega \times A^{\prime} \times \Omega^{\prime \prime}}{a \times a^{\prime} \times a^{\prime \prime}}$
Exayple 22.-In a combination of levers the arms of the power are 6,7 and 11 feet, the arms of the weight 2,3 , and $3 \frac{1}{2}$ feet, the weight is 803 lbs ; what is the power?

SOLUTION.
Here $W=803 \mathrm{lbs} ., a=2, a^{\prime}=3, a^{\prime \prime}=3 \frac{1}{2}, A=6, A^{\prime}=7, A^{\prime \prime}=11$.
Then $P=\frac{W \times a \times a^{\prime} \times a^{\prime \prime}}{A \times A^{\prime} \times d^{\prime \prime}}=\frac{803 \times 2 \times 3 \times 3 \frac{1}{2}}{6 \times 711}=36 \frac{1}{2} \mathrm{lbs}$. Ans.
Example 23.-In a compound lever the power is 17 lbs ., the arms of the power $9,7,6,5$, and 4 ft ., and the arms of the weight $2,3,1,1$, and $\frac{1}{5} \mathrm{ft}$. Required the weight.

SOLUTION.
Here $P=17 \mathrm{lbs}, A=9, A^{\prime}=7, A^{\prime \prime}=6, A^{\prime \prime \prime}=5, A^{\prime \prime \prime \prime}=4, a=2, a^{\prime}=3$, $a^{\prime \prime}=1, a^{\prime \prime \prime}=1$, and $a^{\prime \prime \prime \prime}=\frac{1}{3}$.
 $=6 \pm 260 \mathrm{lbs} . \Delta \mathrm{ns}$.

EXERCISE.

24. In a compound lever the arms of the power are 9 and 17 ft ., the arms of the weight 3 and 4 ft ., the nower is 19 lbs . Wbat is the weight?

- 25. In a compound lever the arms of the power are $6,8,10$, and 12 ft ., the arms of the weight, $7,5,3$, and 1 ft ., the weight is 700 lbs . Required the power. Ans, 1213.

26. In a compound lever the arms of the weight are 11,13 , and 9 ft ., the arms of the power are, 4,7 , and 2 ft ., the weight is 560 lbs . What is the power? Ans. 12870 lbs.

THE WHEEL AND AXLE.

82. The wheel and axle consists of a wheel with a eylindrical axle passing through its centre, perpendicular to the plane of the wheel. The power is applied to the circumference of the wheel, and the weight to the circumference of the axle.
83. The wheel and axle is merely a modification of the lever with unequal arms; the radius of the wheel corresponding to the arm of the power, and the radius of the
 axle to the arm of the weight.
84. The wheel and axle is sometimes called the continual or perpetual lever, because the power aets continually on the weight.
85. The power and weight in the wheel and axle are in equilibrium when the poicer is to the weight as the rudius of the axle is to the radius of the wheel.
86. For the wheel and axle-let $\mathrm{P}=$ the power, $W=$ the weight, $\mathrm{r}=$ radius of the axle, $\mathrm{R}=$ radius of the wheel.

$$
\text { Then } P: W:: r: R \text {. }
$$

Hence $P=\frac{W \times r}{R} ; W=\frac{P \times R}{r} ; r=\frac{P \times R}{W} ;$ and $R=\frac{W \times r}{P}$
Example 27.-In a wheel and axle the radius of the axle is ? inches, the radius of the wheel is 35 inches. What power will balance a weight of 643 lbs ?

SOLETICN.

ITere $W^{\circ}=\mathrm{G} 4 \mathrm{lbs}, \quad R=35$ inches, and $\mathrm{r}=\bar{i}$ inches.
Then $P=\frac{W \times r}{1}=\frac{G 43 \times \overline{7}}{35}=128_{6}$. Ans.

Example 28.-In a wheel and axle the radius of the axle is 6 inches, the radius of the wheel is 27 inches. What weight will be balanced by a power of 123 lbs.?

SOLCTION.

Here $P=123 \mathrm{lbs},. R=27 \mathrm{in}$., and $r=6 \mathrm{in}$.
Then $W=\frac{P \times R}{r}=\frac{123 \times 2 \overline{9}}{6}=533 \frac{1}{2} \mathrm{lbs}$. Ans.
Example 29.- By means of a wheel and axle a power of 11 lbs. is made to balance a weight of $719 \mathrm{lbs} .$, the radius of the axle is 3 inches. Required the radius of the wheel.

SOLDTION.

Here $H=719 \mathrm{lbs}, \quad P=11 \mathrm{lbs}$., and $r=3 \mathrm{in}$.
Then $R=\frac{H^{*} \times r}{l^{\prime}}=\frac{\pi 19 \times 3}{11}=196 \frac{1}{11}$ inches. Ans.

EXERCISE.

30. In a wheel and axle the radius of the axle is 7 inches, the radius of the wheel is 70 inches. What power will balance a weight of 917 los.?

Ans. 91_{7}^{7} Ibs.
31. In a wheel and axle the radius of the axle is 5 inches, and the radius of the wheel 1 ' inches. What power will balance a meight of 5950 lbs . ?

Ans 1750 lbs .
32. In a wheel and axle the radius of the axle is 9 inches, and the radius of the wheel is 37 inches. What power will balance a weight of 925 lbs ? Ans. 225 lbs .
33. In a wheel and axle the radius of the axle is 11 inches, and the radius of the wheel is 45 inches. What weight will a power of 17 lbs. balance? Ans. $69{ }_{1}^{6} \mathrm{r}$ lbs.
34. By means of a wheel and axle a power of 37 lbs balances a weight of 600 lus., the radius of the axle being 8 inches, what is the radius of the wheel? Ans. $151 \frac{1}{5} \frac{3}{\%}$ inches.
35. By means of a wheel and axle a power of 22 lbs . balances a weight of 870 lbs . If the radius of the wheel be 67 inches, what will be the radius of the axle? Ans. $1 \frac{305}{36}$ inches.

THE DIFFERENTLAL WHEEL AND AXLE.

87. In the differential wheel and axte, the axle consists of two parts, one thicker than the other. By each revolution of the wheel the rope rolls once off the thinner portion and once on the thicker portion, and is consequently shortened only by the differences between the circumferences of the axles; and the distance through which the weight is raised is equal to half the shortening of the rope. The effect is therefore the same as if an axle had been used with
 a radius equal to half the difference between the radii of the thicker and thiuner parts of the lifierential axlc.*
88. For the differential wheel and axle let $\mathrm{d}=$ the difference sotween the radii of the axles, $\mathrm{R}=$ radius of the wheel, $\mathrm{l}=$ the vower, and $\mathrm{W}=$ the weight.

Then $P: W:: \frac{1}{2} d: R$.
Whence $P=\frac{W \times \frac{1}{2} d}{R}, W=\frac{P \times R}{\frac{1}{2} d}, R=\frac{W \times \frac{1}{2} l}{P}, \pi n d l=\frac{P \times R}{\frac{1}{2} W}$
Example 36.-In a differential wheel and axle the radins of the larger axle is 4 ! inches, the radius of the smaller axle is 4 ! inches, the radius of the wheel is 70 inches. What power will valance a weight of 1000 lbs ?

sonetion.

Here $d=$ difference of radii $=\frac{1}{f}-\frac{1}{6},=\frac{1}{3}, W=1000 \mathrm{lbs},{ }_{3},=i(1 \mathrm{in}$.

Example 37.-In a differential wheel and axle the radio of the axles are $2 \frac{2}{4}$ and $2-\frac{3}{2}$ inches, the radius of the whel is 100 inches. What power will balance a weight of 7234 lbs ?

[^0]
SOLETION.

llero $d=\frac{1}{4}-\frac{9}{29}=\frac{8}{2113}$ in. $R=100$, and $T=i 234$.

Fxample 39.-In a differential wheel and axle the radii of the axles are $3 \frac{3}{3}$ and $3_{1^{2} \%}$ inches, the radins of the wheel is 86 inches. What weight will t power of 17 lbs . balance?

SOLUTION.

Here $d=\frac{1}{8}-7^{2} \tau=\frac{1}{1 ; 6}$ of an inch, $R=\mathrm{S} 6$ inches, and $P=17 \mathrm{lbs}$.
Then $W=\frac{P \times N}{\frac{1}{2} l}=\frac{17 \times 86}{2 \frac{1}{72}}=\frac{1462}{\Sigma^{\frac{1}{7}} \mathrm{~L}}=397664 \mathrm{lbs}$. Ans.
Example 39.-In a differential wheel and axle the radius of the wheel is 32 inches, and a porer of 5 lbs . balances a weight of 729 . What is the difference between the radii of the axles?

SOLETION.
Here $W=i 29 \mathrm{lbs} ., P=5 \mathrm{lbs}$., and $R=52$ inches.
Thell $d=\frac{P \times R}{\frac{1}{2} W}=\frac{5 \times 32}{\frac{1}{2} \text { of } 729}=\frac{160}{\frac{1}{2} \frac{0}{2}}=\frac{32 n}{\frac{1}{2}} \frac{0}{9}$ of an inch. Ans.

EXERCISE.

40. In a differential wheel and axle the radii of the axles are $7 \frac{1}{5}$ and $7 \frac{9}{\frac{2}{2}}$ inches, and the radius of the wheel is 85 inches. What power will balance a weight of 6900 lbs. ?

Ans. $2_{2 \pi}^{3} \frac{0}{2}$ lbs?
41. In a differential wheel and axie, the radii of the axles are 17 and 16 inches, and the radius of the wheel is 130 inches. What weight will a power of 17 lbs . balance?

Ans. 4420 lbs.
42. In a differential wheel and axle, the radii of the axles are $2 \frac{1}{3}$ aud $2 \frac{2}{7}$ inches, and a power of $23 \frac{1}{2}$ oz. balances a weight of 6400 oz . Required the radius of the wheel.

Ans. $64 y 87$ inches.
43. In a differential wheel and axle, the radii of the axles are $4 \frac{1}{4}$ and 5 inches, the radius of the wheel being 120 inches.a
What power will balance a weight of 2430 oz . ?
Ans. $8_{1}^{1}{ }^{\frac{1}{0}} \mathrm{oz}$.
44. In a differential wheel and axle, the radii of the axles are 13 and $1 \frac{2}{2}$ feet, the radius of the wheel is $12 \frac{3}{4}$ feet. What weight will a power of 880 lbs . balauce? Ans. 146880 lbs .
89. Since the wheel and axle is merely a modification of the lever, a system of wheels and axles is simply a modification of the compound lever, and the conditions of
equilibrium are the same, i. c., the ratio of the power to the weight is compounded of the ratios of the radii of the axles to the radii of the wheels. In loothed gear, however, owing to the difficulty in determining the effective radii of wheel and axte, the ratio of the power to the weight is determined by the number of teeth and leaves unon the wheel and pinion.
90. Axles are made to act on wheels by various methods -as by the mere friction of their surfaces, by straps or endless bands, \&e.; but the most common method of transmitting motion through a train of wheelwork is by means of teeth or cogs raised upon the circumferences of the wheels and axles.
91. When cogrged wheels and axles are employed, that part of the axle bearing the eoss is called a pinion. The cogs raised upon the pinion are called leaves, those upon the wheel are termed teelh.
92. Wheelwork may be used either to concentrate or diffuse power. The power is concentrated when the pinions turu the wheels, as is the case in the crane which

Fig. 7.
 is used to grain power. The power is diffused when the wheels turu the pinions, as is the case in the fanning mill, threshing machine, dec, where extent of motion is sought.
03. In a system of toothed reheels and pinions, the conditions of equilibrium are,-that the power is to the weight as the continuel product of all the leaves is to the continuet product of all the teeth.

[^1]Then $P: W:: l \times l^{\prime} \times l^{\prime \prime}:-t \times t^{\prime} \times t^{\prime \prime}$.
Hence $P=\frac{W \times l \times l^{\prime} \times l^{\prime \prime}}{i \times t^{\prime} \times t^{\prime \prime}}$, and $W=\frac{P \times t \times t^{\prime} \times t^{\prime \prime}}{i \times l^{\prime} \times l^{\prime \prime}}$
Example 45. - The number of teeth in each of three successive Wheels is 80 and the number of leaves in each of the pinions is 5 . With this machine what weight will be supported by a nower of 17 lbs ?

soletion.

Here $P=17, t=80, t^{\prime}=80, t^{\prime \prime}=80, l=5, l^{\prime}=5$ and $l^{\prime \prime}=5$.
Then $W=\frac{P \times t \times t^{\prime} \times t^{\prime \prime}}{l \times l^{\prime} \times l^{\prime \prime}}=\frac{1 \bar{i} \times 80 \times 80 \times 80}{5 \times 5 \times 5}=\frac{5104000}{125^{-}}=69632 \mathrm{lls}$. Ans.
Exayple 46.-In a train of wheel work there are four wheels and four axles, the first wheel and the fourth axle plain, (i. e. without coms), and having radii respectively of 10 and 2 feet. The second wheel has 60 , the third 90 and the fourth 70 teeth, the first axle 7, the second 5 and the third 9 leaves. What power will hold in equilibrium a weight of 20000 lbs?

solutios.

Here we have a combination of the simplo wheel and axle and a system of cogged wheels and axles.
$W=20000 \mathrm{Ibs} . R=10, r=2, t=60, t^{\prime}=90, t^{\prime \prime}=70, l=\pi, l^{\prime}=5$ and $l^{\prime \prime}=9$.
Then eogged wheels and axles acting alone, $P=\frac{20000 \times i \times 5 \times 9}{60 \times 90 \times i 0}=16 \frac{2}{3} \mathrm{lbs}$. and so far as the action of the plain wheel and axles is concerned this 163 lbs. becomes the weight.
Then $P=\frac{W \times r}{R}=\frac{163 \times 2}{10}=\frac{33!}{10}=3 \frac{1 \mathrm{lbs} . \text { Ans. }}{10}$.
Example 47.-In a train of wheei work there are three wheels and axles, the first wheel and the last axle plain, and having a radius of 9 and 3 feet respectively-the cogged wheels have respectively 80 and 110 teeth, and the pinions 11 and 8 leaves What weight will a power of 100 lbs . sustain?

SOLUTION.

Here $P=100 \mathrm{lbs}$., $R=9, r=3, t=80, t^{\prime}=110, l=11$, and $l^{\prime}=8$
Then for cogged wheel work acting alone, $W=\frac{P \times t \times t^{\prime}}{l \times l^{\prime}}=\frac{100 \times 80 \times 11 \mathrm{C}}{11 \times 8}$ $=\frac{88000}{8 \mathrm{~s}}=10000 \mathrm{lbs}$.
For plain wheel and axlealone, $W=\frac{P \times P}{r}=\frac{10000 \times 9}{3}=\frac{9000 \mathcal{S}}{3}$ $=3,000 \mathrm{lbs}$. Ans.

ExERCISE.

48. In a system of wheel work there are five wheels and pinions. The wheels have respectively $100,90,80,70$ and 60 tecth, and the pinions respectively $9,7,11,9$ and 7 leaves; with such an appliance, what weight would be sustaincil by a power of 77 lbs ?

Ans. $5333333 \frac{1}{6}$ lbs.
49. In a train of four wheels and axles the wheels have respectively $70,65,60$ und 50 teetb, and the axlee respectively 9 , 8,7 and 0 leaves; with such an instrument, what power could support a weight of 13000 lbs ?

Jins. $2 \frac{2}{2} \frac{2}{3} \mathrm{lbs}$.
50. In a train of wheel work there are three wheels and three axles, the first wheel and last axle plain, and having radii

- respectively 6 and 2 fect. The second and third whecels have respectively 80 and 50 teeth, and the first and second pinions respectively 5 and 8 leares. With such a machine what weight will be balanced by a power of 11 lbs ?

Ans. 330 lbs .
95. In ordinary wheel work it is usual, in any wheel and pinion that act on each other, to use numbers of tecth that are prime to each other so that each tooth of the pinion may encounter every tooth of the wheel in succession, that thus if any irregularities exist, they may tend to diminish one another by constant wear. This odd tooth in the wheel is termed the lunting cog.

Thus if a pinion contain 10 leares and the wheel 101 teeth, it is evident that the wheel atust turn round 101 times and the pinion 10×101 or 1010 times before the same leaves and the terth will be again engaged.
96. Wheels are divided into crown, sper, and Jevelled gear.
97. The crown wheel has its tecth pernendicular to its plane; the spur whecel has its tecth, which are continnations of its radii, placed on its rim; the bevelled wheel has its teeth oblicjucly placed, i. c., raised on a surface inclined at any angle to the plane of the whecl.
98. To communicate motion round parallel axes spurgear is employed: bevelled gear is used when the axes of motion are inclined to one another at any proposed angle. Where the axes are at right angles to one another a crown wheel working in a spur pinion or a crown pinion workings in a spur wheel is usually employed.
99. Berelled wheels are always frusta of cones channelled from their apices to their bases.

Note.- When bevelled wheels of different diameters are to work together the eections of the cones of which they are to bo frusta are found in the following manner: Let $A B$ be the diamoter of the large wheel, and B C that of the smaller. Place A B and 13 C so as to include the proposed angle. Bisect A is in D and BC in E. Draw perpendiculars D F, E. F mepting in \mathbf{F} and join F A, F Band FC. Then FAB a:td FBC are sections of the required eones. Also drawing 11 G paralFig. 8. lel to $A B$, and $G P$
 parallel to $13 C$, we obtain $H A B G$, and $G B C P$ any required frusta.

THE PULLEY.
100. The Pulley is a circular dise of wood or iron, grooved on the edge and made to turn on its axis by means of a cord or rope passing over it.
101. The pulley is merely a modification of the lever with equal arms, and hence no mechanical advantage is gained by using it-the theory of its use being just as perfect if the cord be passed through rings or over perfectly smooth surfaces. The real advantage of the pulley and cord as a mechanical porrer is due to the equal tensions of every part of the cord, i. e., is founded upon the fact that the same flexible cord, free to run over pulleys or through smooth rings in every direction, must always undergo the same amount of tension in every part of its length.
102. The pulley is called either fixed or movable according as its axis is fixed or movable.
103. Movable pulleys are used either singly, in which oase they are called runners, or in combination. Systems of pulleys are worked either by one cord or by several cords. Pulleys worked by more than one cord are called Spanish Bartons.
104. Tho pulley is often called a sheaf, and the case in which it turns a block. Λ block may contain many sheaves. A combination of ropes, blocks, and sheaves, is called a tacile.
105. In the single fixed pulley the power must be equal to the weight, i. e., a fixed pulley does not concentrate foree at all. And hence the only mechanical advantage derived from its use is, that it changes the direction of the power.
106. In a system of pulleys moved by one cord the conditions of equilibrium are that the power is to the weight as 1 is to twice the number of movable pulleys.

This is evident from the fact that tho weight is sustalned equally by every part of the cord, aud, neglecting the last fold or that to which the power is attached, there are two folds of cord tor every movable pulley. Thus in I'ig. 9 the woight is sustajned by \mathbf{A} and B , each bearing $\frac{1}{2}$ of It; and sinco B passes over a fixed pulley, the power attached to C must be equal to the tensiou exerted on $\mathrm{B}=\frac{1}{2}$ the weight.
107. For a system of pulleys moved by ore cordet $\mathrm{P}=$ the power, $\mathrm{W}=$ the weight, and $\mathrm{n}=$ the number of movalle pulleys.
Then $P: W:: 1: 2 n$.

Hence $P=\frac{W}{2 n}$, $W=P \times 2 n, n=\frac{W}{2 P}$.
Example 51.-In a system of pulleys worked by a single cord there are 4 movable pulleys. What power will support a weight of 804 lbs ?

SOLUTION.

Here $W=804$ and $n=4$
Hence $P=\frac{W}{2 \times n}=\frac{804}{2 \times 4}=\frac{804}{8}=100 \mathrm{l}$ lbs. Ans.
Exa3ple 52.-In a system of 7 movable pulleys worked by a single cord, what weight will be supported by a power of 17 lbs .?

```
                                    SOLUTINX.
```

Hero $P=17$ and $n=7$.
Hence $W=P \times 2 \times n=17 \times 2 \times 7=17 \times 14=238 \mathrm{lbs}$. Ans.

Example 53.-In a system of movable pulleys worked by a single cord a power of 7 lbs . balances a weight of 84 lbs . ; how many movable pulleys are there in the combination?

SOLUTION.
Hero $P=7 \mathrm{lbs}$. and $W=81 \mathrm{lbs}$.
IIence $n=\frac{W}{2 \times P}=\frac{84}{2 \times 7}=\frac{84}{14}=6$. Ans.

EXERCISE.

54. In a system of six movable pulleys worked by one cord the weight is 700 lbs . What is the power? Ans. $58 \frac{1}{3}$. lbs.
55. In a system of eleven movalde pulleys worked by one cord the weight is 6325 lbs . Required the power.

Ans. $116 \frac{1}{2} \mathrm{lbs}$.
56. In a system of eight movable pulleys worked by one cord the power is 37 lbs. Required the weight. Ans. 592 lbs . 57. In a system of seven movable pulleys worked by a single cord the power is $13 \mathrm{lbs} . ;$ what is the weight? Ans. 182 lbs .
58. In a system of movable pulleys worked by a single cord, a power of 35 lbs . supports a weight of 7000 lbs. How many movable pulleys are there in the combination? Ans. 100.
108. In a system of pulleys, such as represented in figure 10, where each movable pulley hangs by a separate cord, one extremity of each cord being attached to a movable pulley and the other to a hook in a beam or other fixed support, each pulley doubles the effect, and the conditions of equilibrium are that the power is to the weight as 1 is to 2 raised to the power indicated by the number of movable pulleys.

Note.-This will become evident by attentively examining the diagram and following op the several cords. The figures at the top show tho portion of weight borne by the several parts of the beam, those attached to the cords show the pertion of the weight sustained by each part of the cord.
109. For a system of pulleys, such as cxemplified in Fig. 10, let $\mathrm{P}=$ the power, $\mathrm{W}=$ the weight, and $\mathrm{n}=$ the number of movable pulleys.

Then $\mathrm{P}: \mathrm{W}:: 1: 2^{\mathrm{n}}$. Hence $\mathrm{P}=\frac{\mathrm{W}}{2^{\mathrm{n}}}$ and $\mathrm{W}=\mathrm{P} \times 2^{\mathrm{n}}$.
Example 59.-In a system of pullejs of the form indicated in Fig. 10, there are 5 movablo pulleys, and a weight of 128 lbs . What is the power?

SOLCTION.
Here $W=12 \mathrm{lbs}$. and $n=5$.
Then $P=\frac{W}{2^{k}}=\frac{128}{2^{-5}}=\frac{128}{32}=4 \mathrm{lbs}$. Ans.
Example 60.-In such a system of pulleys as is shewn Fig. 10, there are 7 movable pulleys. What weight will a power of 11 lbs. balance?

SOLUTION.

IIere $P=11$ and $n=7$.
Hence $W=1^{\prime} \times 2^{n}=11 \times 2^{7}=11 \times 123=1408 \mathrm{Ibs}$. Ans.

EXERCISE.

61. In the system of pulleys represented in Fig. 10, where there are 6 movable pulleys, what power will sustain a weight of 8000 lbs ?
62. In such a system when tbere are 10 movable pulleys, what power will sustain a weight of 48000 lbs . ?

Ans. 467 lbs .
63. In such a system when there are 7 movable pulleys, what power will support a weight of 4564 lbs.

Ans. $35 \frac{2}{3} \frac{1}{2}$ lbs.
64. In such \AA system when there are 3 movable pulleys, what weight will be sustained by a power of 17 lbs .

Ans. 136 lbs.
65. In such a system what weight will a power of 70 lbs . support when there are 5 movable pulleys?

Ans. 2240 lbs.
66. In such a system what weight will a power of 100 lbs support when there are 11 movable pulleys?

Ans. 204800 lbs.
110. In a system of pulleys such as represented in Fig. 11 where the cord passes over a fixed pulley attached to the beam instead of being fastened to
a hook in the beam, each movable pulley triples the effect, and the conditions of equilibrium are that the power is to the weight as 1 tn 3 raised to the power indicuted by the number of movable pulleys.
This will appear plain by a reference to the accompanying diagram where the numbers represent the same as in Art. 108.
111. In a system such as is represented in Fig. 11, let $\mathrm{P}=$ power, $\mathrm{W}=$ the weight, and $\mathrm{n}=$ the number of movable pulleys.

Then P : W :: $1: 3^{\text {n }}$.
Hence $\mathrm{P}=\frac{\mathrm{W}}{3^{\mathrm{n}}}$ and $\mathrm{W}=\mathrm{P} \times 3^{\mathrm{n}}$.
Example 67.-In the system of pulleys represented in Fig. 11, what power will balance a weight of 4500 lbs., when there are 4 morable pulleys?

SOLUTION.
Here $W=4500$ and $n=4$.
Then $P=\frac{W}{3^{a}}=\frac{4500}{3^{3}}=\frac{4500}{81}=55_{9}^{5}$ lbs. Ans.
Example 68.-In snch a system when there are 6 movable pulleys, what weight will a power of 10 lbs . support?
soletion.
Here $P=10$, and $n=6$.
Then $W=P \times 3^{n}=10 \times 3^{5}=10 \times 729=7290 \mathrm{lbs}$. Ans. EXERCISE.
69. Iu the system of pulleys represented in figure 11, there are morable pulleys; what weight may be supported by a power of 10 lbs ?

Ans. 2430 lbs.
70. In such a system there are 7 movable pulleys and the weight is 24057 lbs. Required the power.

Ans. 11 lbs.
71. In such a system there are 9
morable pulleys - through how many feet must the power deseend in order to raise the weight 10 feet?

Ans. 196830 feet.
112. If the lines of direction of the power and weight make with one another an angle greater than 120°, the

Fig. 12.
 power will require to be greater
than the weight; and as this angle approaches 180°, the difference between the power and weight will approach \propto. Hence it is impossible for any porwer P, however great, applied at P, to pull the cord $A B C$ mathematically straight, and that however small the weight W may be.

THE INCLINED PLANE.

113. The Inclined Plane is regarded in mechanical science as a perfectly hard, smooth, inflexible plane, inelined obliquely to the weight or resistance.
114. There are two ways of indicating the degree of inclination of the inclined plane:

1st. By saying it rises so manv feet, inches, \&c., in a certain distance.

2nd. By describing it as rising at some stated angle with the horizon.
115. In the inclined plane the power may be applied in any one of three directions:

1st. Parallel to the plane.
2nd. Parallel to the base.
3rd. Inclined at any angle to the base.
116. In the inclined plane the conditions of equilibrium are as follows :-

1st. If the power act parallel to the plane:-the power is to the weight as the height of the plane is to its length.

2nd. If the power act parallel to the base:-the power is to the weight as the height of the plane is to its base.
Note.-The third case does not come within the design of the present work.
117. For the inclined plane let $\mathrm{P}=$ the power, $\mathrm{W}=$ the weight, $\mathrm{L}=$ length of the plane, $\mathrm{H}=$ height of the plane, and $\mathrm{B}=$ lase of the plane.

Then $P: W:: H: L$.
Hence $P=\frac{W \times H}{L} W=\frac{P \times L}{H} ; H=\frac{P \times L}{W}$; and $L=\frac{W \times H}{P}$.
Also $P: W:: H: B$.
Hence $P=\frac{W \times H}{B} ; W=\frac{P \times B}{H} ; H=\frac{P \times B}{W} ;$ and $B=\frac{W \times H}{P}$.
Exayple 72.-On an inclined plane rising 7 feet in 200, what power acting parallel with the plane will sustain a weight of 4000 lbs. ?

solution.

Here $F=4000 \mathrm{lbs}$., $L=200$, and $H=7$.
Then $P=\frac{W \times H}{L}=\frac{4000 \times 7}{200}=\frac{25000}{200}=140 \mathrm{lbs}$. Ans.
Example $73 .-$ On an inclined plane rising 9 feet in 170-what weight will sapport a power of 180 lbs . acting parallel to the plane?

sOLUTIOX.

Here $P=150 \mathrm{lbs}$., $L=170$, and $H=9$.
Then $W=\frac{P \times L}{H}=\frac{180 \times 170}{9}=3100 \mathrm{lbs}$. Ans.
Exayple 74.-On an inclined plane a power of 11 lbs . acting parallel to the plane supports a weight of 150 lbs .-how much does the plane rise in 200 feet?

solution.

Here $P=11 \mathrm{lbs}$., $W=150 \mathrm{lbs}$., $L=200$ feet.
Then $H=\frac{P \times L}{W}=\frac{11 \times 200}{150}=14$ feet 8 inches. Ans.
Example 75 .-The base of an inclined plane is 40 feet and the beight 3 feet,-what power acting parallel to the base will sapport a weight of 250 lbs .?

SOLUTIOX.

Here $W=250 \mathrm{lbs}, H=3$, and $B=40$.
Then $P=\frac{W \times \pi}{B}=\frac{250 \times 3}{40}=18 \frac{1}{4}$ 1bs. Ans.
Example 76.-On an inclined plane a power of 9 lbs. acting parallel to the base supports a weight of 700 lbs . - the height of be plane being 18 feet, what is the length of the base?

solution.

Here $P=9 \mathrm{Jbs}$., $W=700 \mathrm{lbs}$., and $H=18$ feet.
Then $B=\frac{W \times M}{P}=\frac{700 \times 19}{9}=1400$ feet. Ans.

EXERCISE.

77. On an inclined plawe rising 1 foot in 35 feet, what power acting parallel to the plane will support a weight of 17500 lbs.?

Ans. 500 lbs .
78. On an inclined plane rising 9 feet in 100 feet, what power acting parallel to the plane will sustain a weight of 4237 lbs.? Ans. $381,1_{13}^{3} \mathrm{lbs}$ lbs.
79. On an inclined plane whose height is 11 feet and base 900 feet, what power acting parallel to the base will sustain a weight of 27900 lbs ?

Ans. 341 lbs .
80. On an inclined plane rising 7 feet in 91 feet, what weight will be supported by a power of 1300 lbs ., acting parallel with the plane?

Ans. 16300 lbs .
81. On an inclined plane a power of 2 lbs., acting parallel to the plane, sustains a weight of 10 lbs .- what is the inclination of the plane? Ans. Plane rises 1 foot in 5 feet.
82. On an inclined plane a power of 7 lbs ., acting parallel to the base, sustains a weight of 147 lbs .-if the base of the plane be 17 feet what will its height be? Ans, $\frac{1}{2} 7$ feet.
83. On an inclined plane rising 2 feet in 109 feet, what weight will be sustained by a power of $17 \mathrm{lbs} .$, acting parallel to the plane?

Ans. $926 \frac{1}{2}$ lbs.
84. On an inclined plain a power of $4 \frac{3}{7} \mathrm{lbs}$, sustains a weight of - 223_{j}^{-4} lbs. ; the power acting parallel to the plain, what is the degrec of inclination?

Ans. Plane rises 341 feet in 17199 feet.
85. What weight will be supported by a power of 60 lbs., acting parallel to the base of an inclined plane whose height is 7

- feet and base 15 feet?

Ans. 128年 lbs.

THE WEDGE.

118. The wedge is merely a movable inclined plane or a double inclined plane, i. e., two inclined planes joined together by their bases.
119. The wedge is worked either by pressure or by percussion.
Note--When the wedge is worked by percussion, the relation between the power and weight cannot be ascertained since the force of percussion differs so completely from continued forces as to admit of nu comparison with them.
120. In the wedge the conditions of equitibrium are that the power is to the weight as half the width of the back of the wedge is to its length.

Note 1.-Unlike all other mechanical powers, the practical use of the wedge depends on friction, as, were it not prevented by friction, the wedge would recoil at cvery stroke.
Note 2.-Razors, knives, scissers, chisels, awls, pins, needles, \&c., are examples of the application of the wedge to practical purposes.
121. For the wedge, let $\mathrm{P}=$ power or pressure, $\mathrm{W}=$ the weight, $\mathrm{L}=$ the length of the wedge, and $\mathrm{B}=$ the width of the back.
Then $\mathrm{P}: \mathrm{W}:: \frac{1}{\frac{1}{2}} \mathrm{~B}: \mathrm{J}$. Hence $\mathrm{P}=\frac{\mathrm{W} \times \frac{1}{2} \mathrm{~B}}{\mathrm{~L}}$ and $\mathrm{W}=\frac{\mathrm{P} \times \mathrm{L}}{\frac{1}{2} \mathrm{~B}}$.
Example 86.-The length of a wedge is 24 inches, and its thickness at the back 3 inches, what weight would be raised by a pressure of 750 lbs ?

solution.

Here $P=750 \mathrm{Jbs} ., J_{1}=24$ inches, and $\frac{1}{2} B=1 \frac{1}{2}$ inch.
Then $W=\frac{P^{\prime} \times L}{\frac{1}{2} B}=\frac{750 \times 24}{1 \frac{1}{2}}=750 \times 16=12000 \mathrm{lbs}$. Ans.
Exampia 87.-In a wedge, the length is 17 inches, thickness of back 2 inches, and the weight to be raised is 11000 lbs . Required the pressure to be applied?

SOLUTION.

Here $W=11000, T=17$ inches, and $\frac{1}{2} B=1$ inch.
Then $P=\frac{W \times \frac{1}{2} B}{1,}=\frac{11000 \times 1}{1 i^{7}}=644_{1}^{1} \frac{1}{7}$ lbs. Ans.
EXERCISE.
88. The lengtly of a wedge is 30 inches and the thickness of

- its lack 1 inch, what weight will be raised by a pressure of 97 Jbs ?

Ans. 5820 lbs.
89. The length of a wedge is 19 inches and the thickness of its back 4 inches, what pressure will be required to raise a

- weight of 864 lbs.?

Ans. $901 \frac{18}{8} \mathrm{lbs}$.
90. The length of a werge is 23 inches and the thickness of its back 3 inches-with this instrument what pressure would be required to raise a weight of 1771 lbs ? Ans. $115 \frac{1}{2}$ lbs.

THE SCREW.

122. The screw is a modification of the inclined plane, and may be regarded as being formed of an inclined plane, wound round a cylinder.
Note,-The screw bears the same relation to an ordinary inclined plane that a circular staircase does to a straight one.
123. The threads of the screw are cither triangular or squaro. The distance of a thread and a space when the thread is square, or the distance between two contiguous triangular threads, is called tho pitch.
124. The serew is commonly worked by pressure against the threads of an external serew, called the box or nut. The power is applied either to turn the serew while the nut is fixed, or to turn the nut while the serew is kept immovable.
125. In practice, the serew is seldom used as a simple mechanical power, being nearly always combined with some one of the others -usually the lever.
126. The conditions of equilibrium between the power and the weight in the serew are the same as for the inclined plane, where the power acts parallel to the base, i. e.,

Fig. 13.

The power is to the weight as the pitch (i. e. height) is to the circumference of the lase (i. e. length of the plane.)

When the serew is worked by means of a lever, the conditions of equilibrium are :-

The power is to the weight as the pitch is to the circumference of the circle described by the power.
127. The efficiency of the serew as a mechanical power may be increased by two methods :

> 1st. By diminishing the pitch.
> 2nd. By inereasing the length of the iever.
128. For the scrcw, let $\mathrm{P}=$ the power, $\mathrm{W}=$ the weight, p $=$ the putch, and $1=$ length of the lever.

Then since the lever forms the radius of the circle described by the power, and the circumference of a circle is 3.1416 times the diameter, and the diameter is twice the radius, $\mathrm{P}: \mathrm{W}:: \mathrm{p}: 1 \times 2 \times$ 3•1416.
Henee $P=\frac{W \times p}{l \times 2 \times 3.1416} W=\frac{P \times l \times 2 \times 3.1416}{p}$ and $p=\frac{P \times l \times 2 \times 3.1416}{W}$.
Note.-The pitch and the length of the lever most be both expressed in units of the samo denominations, i. $c_{\text {. }}$, both feet, or both iuches,

Example 91.-What power will sustain a weight cf 70000 lbs . by means of a screw having a pitch of $\frac{1}{11}$ of an inch, and the lever to which the power is attached 8 ft .4 in . in length?

solution.

Here $W=70000 \mathrm{lbs} ., p=\frac{1}{14} \cdot \mathrm{in}$., and $l=8 \mathrm{ft} .4 \mathrm{in}=100 \mathrm{in}$.
Here $P=\frac{W \times p}{l \times 2 \times 3 \cdot 1416}=\frac{70000 \times \frac{1}{14}}{100 \times 2 \times 3 \cdot 1416}=\frac{5000}{628 \cdot 32}=\frac{500000}{628322}=7.957 \mathrm{Tbs}$. Ans.
Example 92 . What weight will be sustained by a power of 5 lbs. by means of a screw having a pitch of $\frac{1}{2}$ th of an inch, the power lever being 50 inches in length?

SOLUTION.

IIcre $P=5 \mathrm{lbs} . p=-\frac{1}{0}$ inch, and $l=50$ inches.
Then $W=\frac{P \times l \times 2 \times 3.1416}{p}=\frac{5 \times 50 \times 2 \times 3.1416}{\frac{1}{10}}=\frac{1570.8}{\frac{1}{10}}=15708 \mathrm{lbs}$. Ans.
Example 93.-By means of a screw having a power lever 5 ft . 10 inches in length, a power of 6 lbs . sustains a weight of 80000 lbs. ; what is the pitch of the screw?

SOLUTION.

Here $P=6 \mathrm{lbs} ., W=80000 \mathrm{lbs}$., and $l=70$ inches.
Then $p=\frac{P \times l \times 2 \times 3 \cdot 1416}{W}=\frac{6 \times 70 \times 2 \times 3 \cdot 1416}{80000}=\frac{2633 \cdot 944}{80000}=\cdot 0329868$ inches, or about $\frac{33}{1000}$ of an inch. Ans.

Example 94.-What power will sustain a weight of 96493 lbs . by means of a screw having a pitch of $7^{3} 7$ th of an inch, the power lever being 25 inches in length?

SOLUTION.
Here $W=96493 \mathrm{lbs} ., p=1^{3} \gamma$ th inch, and $l=25$.
Then $P=\frac{W \times p}{l \times 2 \times 3 \cdot 1416}=\frac{96493 \times 1^{3} \gamma}{25 \times 2 \times 3 \cdot 1416}=\frac{289179}{157 \cdot 08}=\frac{17028 \cdot 1764}{157 \cdot 08}=$ $108 \cdot 403 \mathrm{lbs}$. Ans.

exercise. .

95. What power will support a weight of 87000 lbs . by means of a screw having a pitch of ${ }_{2}{ }^{5}$ th of an inch, the power lever being 6 ft .3 inches long? Ans. $31 \cdot 83 \mathrm{lbs}$.
96. What weight will be sustained by a power of 200 lbs. acting on a screw having a pitch of $3^{3} 0$ th of an inch-the power lever being 15 inches long? Ans. 314160 lbs .
97. By means of a screw having a power lever 50 inches in length, a weight of 9000 lbs . is supported by a power of 2 lbs . Required the pitch of the screw.

Ans. $\cdot 41888$, or rather over $\frac{2}{5}$ of an inch.
98. What power will support a weight of 11900 lbs by means of a screw having a pitch of $\gamma^{1} f$ th of an inch, the power lever being 10 ft . in length?

Ans. 3.713 lbs .
90. By means of a screw having a power lever 7 ft . 6 inches in length, a power of 10 lbs supports a weight of 65400 ; what is the pitch of the screw? Ans. 0864 of an inch.
100. What weight will be supported by a power of 50 lbs acting on a screw with a pitch of ${ }_{4}^{-3} 8$ th of an inch-the power lever being 8 ft .4 inches in length ?

Ans. 418880 lbs.

TIIE DIFFERENTIAL SCREW

129. The differential screw, (invented by Dr. Joln Hunter,) like the differential wheel and axle, acts by diminishing the distance through which the weight, is moved in comparison with that traversed by the power.

It consists of two screws of diffurent pitch, working one within the other (Fig. 14), so that at each recolution of the power lever the weight is raised through a space only equal to the difference between the pitch of the exterior serew and the pitch of the inner screw. It follows that the mechanical effect of the differential screw is equal to that of a single serew having a pitch equal to the difference of pitch of the two serews.

For instance, in Fig. 14, the part B works within the part A. Now, if B have a pitch of ${ }_{20}{ }^{1}$ th of an inch and A a pitch of $\frac{1}{5}$, then at each revolution of the handle the weight will be raised through $)^{1} \Phi-\frac{1}{2} \pi=\frac{1}{3} \times \sigma^{0}$ of an inch, and the whole instrument lias the same meehanical effect as a single screw having a pitch of $3 \frac{1}{3} 0^{\text {th }}$ th of an inch.
130. For the differential screw, let $\mathrm{P}=$ power, $\mathrm{W}=$ weight, $1=$ length of lever, and $\mathrm{d}=$ difference of pitch of the two screws.

Then $P: W:: d: l \times 2 \times 3.1410$.
Hence $P=\frac{W \times d}{l \times 2 \times 3.1416}$ and $W=\frac{P \times l \times 2 \times 3.1416}{d}$

Exampla 101 . What power will exert a pressure of 20000 lbs . by means of a differential serew baving a power lever 50 inches in length, the exterior screw a pitch of $\mathbf{1}^{3}$ of an inch, and the inner screw a pitch of ${ }_{2}^{3} 0^{3}$ th of an inch?

SOLUTION.
 an iuch.

Then $P=\frac{W \times d}{l \times 2 \times 3.1416}=\frac{20 n n 0 \times r^{2} 2^{7} 0}{50 \times 2 \times 3 \cdot 1416}=\frac{27020}{314 \cdot 16}=\frac{2454.545}{314 \cdot 16}=\frac{245454.54}{314 \cdot 16}$ $=7 \cdot 81 \mathrm{lbs}$. Ans.
Exayple 102.- What pressure will be exerted by a power of 1000 lbs . acting on a differential screw in whioh the power lever is 75 inches lour, the pitch of the exterior screw in of an inch, and that of the interior screw ${ }^{7}$ ts of an inch?

SOLUTIOX.

 of an inch.
Then $W=\frac{p \times l \times 2 \times 3.1416}{d}=\frac{1000 \times 75 \times 2 \times 3.1416}{8.51}=\frac{471241}{-3,16}=\frac{400554000}{31}$ $=1232109 \sigma_{31}^{2}$ lbs. Ans.

EXERCISE.

103. What power will exert a pressure of 100000 lbs . by means of a differential screw in which the power lever is 100 inches long, the pitch of the outer screw $\frac{1}{3} 9$ of an inch, and that of the inner screw $\frac{1}{40}$ of an inch?

Ans. 102 or about $\frac{1}{10}$ of a lb .
104. What pressure will be exerted by a power of 20 lbs. acting on a differential screw in which the power lever is 50 inches long, the pitch of the exterior screw $\frac{8}{11}$ of an inch, and that of the inner screw $\frac{1}{8}$ of an inch? Ans. 345576 lbs .
105. What power will gire a pressure of 60000 lbs . by means of a differential screw in which the powerlever is 60 inches, the pitch of the outer screw $-z^{3} 0$, and that of the inner screw is of an inch?

Ans. $2 \cdot 652 \mathrm{lbs}$.

THE ENDLESS SCREW.

131. The Endless Screw, Fig. 15 , is an instrument formed by combining the screw with the wheel and axle. The teeth of the wheel are set obliquely so as to act as much as possible on the threads of the screw.

Fig. 15.

132. In Fig. 15 each revolution of the handle makes the wheel revolve only through the space of one \cos; hence if the whole has 24 cogs, the wineh must revolve 24 times in order to make the wheel revolve once.

It follows that in the endless or perpetual screw the conditions of equilibrium are that the poucer is to the weight as the radins of the axle is to the product of the number of teeth in the wheel multiplied by the length of the winch; i.e., the radius of the circle described by the power.
133. For the endless screw let $\mathrm{P}=$ power, $\mathrm{W}=$ weight, $1=$ length of winch or handle, $\mathrm{t}=$ number of teeth in the wheel, and $\mathrm{r}=$ radius of axle.

Then $P: W:: r: l \times t$. Whence $P=\frac{W \times r}{l \times t} W=\frac{P \times l \times t}{r}$.
Example 106.-In an endless screw the length of the winch or handle is 25 inches, the wheel has 60 cogs, and the axle to which the weight is attached has a radius of 2 inches. What weight will be sustained by a power of 100 lbs ?

SOLUTION.

Here $P=100 \mathrm{lbs}$, $r=2$ inches, $l=25$ inches, and $t=56$.
Then $W=\frac{P \times l \times t}{r}=\frac{100 \times 25 \times 60}{2}=\frac{150000}{2}=75000 \mathrm{lbs}$. Ans.
Example 107. -In an endless screw the length of the winch is 20 inches, the wheel has 56 teeth and the radius of the axle is 3 inches. What power will support a weight of 14000 lbs ?

SOLUTION.

Here $W=14000 \mathrm{lhs}, r=3$ inches, $l=20$ inches, and $t=60$.
Then $P=\frac{W \times r}{l \times t}=\frac{14000 \times 3}{20 \times 56}=\frac{42000}{1120}=3 i \frac{1}{2} l \mathrm{l} \mathrm{hs}$. Ans.

exercise.

108. In an endless screw the length of the winch is 18 inches, the radius of the axle is 2 inches, the wheel has 48 tecth, and the power is 120 lbs . Required the weight.

Ans. 51840 lbs .
109. What power will support a weight of a million of 1 lbs . by means of an endless screw having a winch 25 inches long, an axle with a radius of 1 inch, and a wheel with 100 teeth?

Ans. 400 lbs.
110. What weight will be raised by a power of 40 lbs . by means of an endless screw in which the winch is 20 inches long, the radius of the axle 2 inches, and the number of teeth in the wheel 80 ?

Ans. 32000 lbs .
134. The theoretical results obtained by the foregoing rules are in practice very greatly modified by several retarding forces. Thus friction has to be taken into account in each of the mechanical powers--the weight of the instrument itself in the lever and in the movable pulleythe rigidity of cordage in the pulley and in the wheel and axle, \&c.

FRICTION.

135. Friction aids the porrer in supporting the weight, but opposes the power in moving the weight, and hence, materially affects the conditions of equilibrium in the mechanical powers.
If P be the power necessary in the absence of all frietion, and f the friction, then the weight will be held in equilibrium by any power which is less than $P+f$, or greater than $P-f$.
136. Friction is of two kinds : 1st. Sliding Friction. 2nd. Rolling Friction.
137. The fraction which expresses the ratio between the whole weight and the power necessary to overcome the friction, is called the coeficient of friction. The coefficient of sliding friction, in the case of hard bodies, varies from $\frac{1}{7}$ to $\frac{1}{2}$.
138. On a perfectly level road, power is expended only for the purpose of overcoming friction, and on the same road the ratio between the power and the load is constant, -varying on common roads, according to their goodness, from $\frac{1}{18}$ to $\frac{1}{50}$ of the load. On an eren railway, however, it is not more than $\frac{1}{1} \frac{1}{50}$ to $\frac{-\frac{1}{8} \sigma}{}$ of the load, according to the dampness or dryness of the rail. On a good macadamized road the coefficient of friction is about $\frac{1}{30}$, so that a horse drawing a load of one ton or 2000 lbs . must draw with a force of $\frac{1}{30}$ of 2000 lbs . or $66 \frac{2}{3} \mathrm{lbs}$.; this is called the force of traction.
139. Various expedients are in common use for diminishing the amount of friction, such as crossing the grain, when wooden surfaces rub on one another, using surfaces of different materials, as wood on metal, or one kind of
metal on another kind, and annointing the surface with oil, tar, or plumbago. Tallow diminishes the friction by onc-half.

The following are the conclusions of Coulonis on the important subject of sliding friction :-
I. Frietion is dlrectly proportional to the pressure.
II. Friction between the same two bodies is constant, being uninflaenced by oither the extent of surface in contact or the velocity of the motion.
III. Friction is greatest between surfaces of the samo material.
IV. Friction varies with the nature of the surface in contact. The friction between surfaces of wood, newly planed $=\frac{1}{3}$ The friction between similar metallic surfaces = The frietion of a wooden surfaco on a metallic surface $=\frac{1}{4}$ Tho friction of fron sliding on iron The friction of iron sliding on brass
V. Friction decreases as the surfaces in contact wear. In wood the friction is thus roduced from $\frac{1}{2}$ to $\frac{7}{3}$.
VI. Friction is diminished between wooden surfaces by crossing the fibres. If when the fibres are in the same direction the coefficient of friction is $\frac{1}{2}$, it is diminished to $\frac{f}{}$ by crossing them.
VII. Friction is greater between rough than between polished surfaces.

Hence arises tho use of lubricants in mschinery. When tho pressure is small, the most limpid oils ure used. At greater pressures, the moro riscid oils are preferred, then tallow, then a mixture of tallow and tar, or tallow and plumbago, then plumbago alone, and in the heaviest macninery soapstone has been found to be the most efficacious substance.
Note.-At very great velocities the frictlon is perceptibly lessened; when the pressure is very greatly increased, the friction is not increased in proportion.

ROLLING FRICTION.

VIII. Friction caused by one body rolling on another is directly proportional to the pressure, and inversly to tho diameter of the rolling body. Tlat is, if a cylinder rolling along a plane have its presauro doubled. its friction will also be donbled; but if its diameter be doubled, the friction will be only half of what it was.
The friction of a wooden cylinder of 32 inches in diameter rolling upon rollers of wood is T_{2}^{1} of the pressure.

The friction of an iron axle turning in a box of brass and well coated with oil is $\frac{1}{40}$ of the pressure.

CHAPTER IV.

UNIT OF WORK, WORK OF DIFFERENT AGENTS, HORSE POWER OF LOCOMOTIVES, STEAM EKGINES, AND WORK OF STEAM.

UNIT OF WORK.

140. In comparing the work performed by different agents, or by the same agent under different circumstances, it becomes necessary to make use of some definite and distinct unit of work. The unit commonly adopted for this purpose in England and America is the labor requisite to raise the weight of one pound through the space of one foot.

Thus in raising 1 lb . through 1 foot, 1 unit of work is performed.
If 2 lbs . be raised 1 ft ., or if 1 lb . be raised 2 ft ., 2 units of work are performed.
If 7 lbs. be raised through 9 ft ., or if 9 lbs. be raised throngh 7 ft ., 63 units of work are performed, \&c.
141. The units of worlo expended in raising a body of a given weight are found by multiplying the weight of the body in lbs. Wy the vertical space in feet through whieh it is raised.

Example 111.-How many units of work are expended in raising a weight of 642 lbs . to a height of 70 ft .?
solution.
Ans. Units of work $=642 \times 70=44940$.
Example 112.-How many units of work are expended in raising a weight of 423 lbs . to a height of 267 fc . ?

> solution.

Ans. Enits of work $=423 \times 267=112941$.
Exayple 113.- How many nnits of work are expended in raising 11 tons of coal from a nit whose depth is 140 ît. ?

sOLCTION.

Here, 11 tons $=11 \times 2000=22000 \mathrm{lbs}$.
Then $22000 \times 140=3080000$. Ans.
Example 114.-How many units of work are expended in raising 7983 gallons of water to the height of 79 ft .?

SOLUTION.

ITere, since a gallon of water woighs 10 lias, 7983 gals. $=79830 \mathrm{lbs}$.
Then units of work $=79830 \times 79=0806570$. Ans.
Example 115.-How many units of work are expended in raising 00 cubic feet of water from $\&$, well whose deoth is 90 feet ?

BOLETIOX.

Since a cuble foot of water weighs 621 lbs., 60 cubio feet weigh $62 \frac{1}{2} \times 60=$ 3750 lbs.
Then units of work $=3750 \times 90=337500$. Ans.
ExERCISE.
116. How much work would be required to pump 60000 gallons of water from a mine whose depth is 860 feet ?

Ans. 516000000 units.
117. How many units of work would be expended in pumping 8000 cubie feet of water from a mine whose depth is 679 fect?

Ans. 330500000 units.
118. How much work would be expended in raising the 1 am of a pile driving engine-the ram weighing 2 tons, and the height to which it is raised being 29 feet?

Ans. 116000 units.
119. How much work wculd be required to raise 17 tons of coals from a mine whose depth is 300 feet?

Ans. 10200000 units.
120. How much work would be expended in raising 600 cubic feet of water to the height of 293 feet?

Ans. 10987500 units.
142. The most important sources of laboring forec are animals, water, wind, and steam. The laboring force of animals is modified by various circumstances, the most important of which are the duration of the labor, and the mode by which it is applied. The following table shows the amount of effective work that can be performed under different circumstances by the more common living agents:

TABLE.
biewing the work done per minete by fariods agests.
Duration of labor eight hours per day.
Horse.. 33000 units
Mulc......... ... 22000 "
Ass... . 8250 "
Man, with wheel and axle........................ 2600 "
" drawing horizontally 3200 "
" raising materials with a pulley.......... 1600 "
" throwing carth to the height of 5 fect. 500 "

Man, working with his arms and legs as in rowing

4000 units
" raising water from a well with a pail and rope

1054 "
66
raising water from a well with an upright chain pump.

1730
66
Notz.-The work assigned by Watt, to the horse per minnte was 33000 nnits, but this is known to be about too great. A horse of arerage strength performs about 22000 units of work per minnte. The number giren in the table, however, is still used in all calculations in civil engineering.

Exayple 121.- How many cubic feet of earth, each weighing 100 lbs ., will a man throw to the beight of 5 feet in a day of 8 hours?

solution.

Since (by the table) a man throwing earth to the height of 5 ft ., does 560 units of work per minute-and from the example ho works $8 \times 60=450$ minutes.

Units of work done in the day $=560 \times 480$.
Units of work required to throw 1 cubic foot to height of 5 feet $=100 \times 5$.
Then $\frac{560 \times 489}{100 \times 5}=53.3$ cubic feet. Ans.
Example 122.-How many gallons of water will a man raise in a day of 8 hours from a well whose depth is 70 feet-using a pail and rope?

SOLUTION.

Units of work $=1054 \times 60 \times 8$; work required to raise 1 gal. $=10 \times 70$.
Then number of gallons $=\frac{1054 \times 60 \times 8}{10 \times 70}=\pi 22 \frac{26}{35^{\circ}}$. Ans.
Exajrfe 123.-How many gallons of water can a man raise by uneans of a chain pump in a day of 8 hours from the depth of 80 feet?

sOLETION.

Units of work performed by the man $=1,30 \times 60 \times 8$.
Units of work required to raise 1 gal . of water $=10 \times 80$.
The number of gallons $=\frac{1730 \times 60 \times 8}{10 \times \delta \omega}=1038$. Ans.
Example 124.-How many tons of earth will a man working with a wheel and axle raise in a day of 8 bours from a depth of ST feet?

SOLUTION.

Thits of work performed by the $\operatorname{man}=25^{2} 0 \times C 0 \times 8$.
Units of work required to raise 1 ton to height of $87 \mathrm{ft} r=2000 \times 87$.
Tons raised $=\frac{2600 \times 60 \times 8}{2000 \times 87}=7 \frac{5}{29}$. Ans.
Example 125.-How many gallons of water per hour will an angine of 7 horse power raise from a mine whose depth is 110 feet?

SOLETION.

Units of work in one horse power $=33000$ per minute.
Units of work in 7 horse power $=33000 \times 7$.
Units of work performed by the engine per hour $=33000 \times 7 \times 60$.
Units of work required to ralse 1 gallou of water to the height of $110 \mathrm{ft} .=$ 10×110.
IIenco number of gallons $=\frac{33000 \times 7 \times 60}{10 \times 110}=1260$. Ans.
Fisample 126.- How many horso power will it require to raise 22 tons of coals per hour from a mine whose depth is 360 feet ?

SOLUTION.

Weinht of coals to be raised $=22$ tons $=41000 \mathrm{lbs}$.
Units of work required jer hour $=44,00 \times 360$.
Units of work in one horse power per hour $=33000 \times 60$.
Hence II. P. $=\frac{44000 \times 300}{33000 \times 60}=8$. Ans.
Example 127.-How many cubic feet of water will an engine of 15 horse power pump each hour from a mine whose depth is 900 feet?

solution.

Units of work performed by engine per hour $=33000 \times 60 \times 15$.
Units of work required to raiso 1 cubic foot $=63 \cdot 5 \times 900$.
Hence, number of cubic feet $=\frac{33000 \times 60 \times 15}{62.5 \times 900}=528$. Ans.
Example 128.- What must be the horse power of an engine in order that working 12 hours per day it may supply 2300 fainilies with 50 gallons of water each per day-taking tho mean height to which the water is raised as 80 feet, and assuming that $\frac{1}{6}$ of the work of the engine is lost in transmission?

SOLCTION.

Weight of water pumperl per day $=2300 \times 50 \times 10$.
linits of work required daily $=2300 \times 50 \times 10 \times 80$.
Units of work in one horso power per day $=3300 \times 12 \times 60$.
lut since $\frac{1}{6}$ of the work of the engine is lost in transmission.
Eseful work of one H. P. per day $=\frac{5}{6} \times 33000 \times 12 \times 60$.
IIence, 11. 1. $=\frac{2300 \times 50 \times 10 \times 80}{\frac{8}{6} \times 33000 \times 12 \times 60}=4.04$. Ans.

EXERCISE.

129. How many cubic feet of earth, each weighing 100 lbs ., will a man raise by means of a pulley from a depth of 30 fect in a day of 8 hours? Ans. 256 cubic fect.
130. How many cubic feet of water per hour will an engine of 20 II. P. raise from a mine whose depth is 450 feet, assuming that $\frac{1}{6}$ of the work of the engine is lost in transmission?
131. What must be the H. P. of an engine in order that it may raise 11 tons of material per hour from a depth of 700 ft ? Ans. $7 \cdot 77$ 甘. P.
132. A forge hammer weighing 890 lbs. makes 50 lifts of 4 feet each per minute-what must be the horse power of the engine that works the hammer? Ans. H. P. $=5 \cdot 39$
133. An engine of 8 horse power works a forge hammer, causing it to make 50 lifts per minute, each to the eight of 6 feet. What is the weight of the hammer?

Ans. 880 lbs .
134. An engine of 8 horse power gives motion to a forge hammer, which weiglss 300 lbs ., and makes 30 lifts per minute of 2 feet each; and at the same time raises 2 tons of coal per hour from the bottom of a mine. Required the depth of the mine.

Ans. 3690 feet.
Note.-The work of the engine $=33000 \times 8$ units per minute. From this subtract the units of work required by the hammer; the remainder will be the work expended per minute in raising the coal. Multiplying this by 69 gives us the work required per hour for the coa!; and this last is the product of the weight in lhs. by the depth in feet, of which the former is given.

WORK EXPENDED IN MOFING A CARBIAGE OR RAILTAY TRAIN ALONG A HORIZONTAL PLANE.
143. In moving a carriage, \&e., along a level plane, a certain amount of power is expended in overcoming the friction of the road. This is rolling friction, and amounts as before stated (Art. 138,) to form $\frac{1}{50}$ to $\frac{1}{18}$ of the entire load on common roads, and form $2^{\frac{1}{8} 0}$ to $\frac{1}{1 \frac{1}{5} 0}$ of the load on railway tracks. In the case of railway trains, friction is usually taken as 7 lbs . per ton of 2000 lbs .
144. In running carriages of any deseription, work is employed to overcome the resistances. These,resistances are :-

1st. Friction-which on the same road and with the same load is the same for all velocity.
2nd. Ascent of inclined planes-in which, since the load has to be lifted vertically through the height of the plane the work is the same, whatever may be the velocity of the motion.
3rd. The Resistance of the Atmosphere-which depends upon the extent of surface, and increases as the square of the velocity.
145. When a railway train is set in motion, the workof the locomotive engine at first far excceds the work of resistauces, and the motion is consequently rapidly accelerated. But as the velocity of the train inereases, the atmospheric resistance also increases, and with such rapidity as very soon to equalize the work of resistances to the work of the locomotive. When this occurs, i. e., when the work applied by the locomotive is exactly equal to the continued work of resistances (atmospherie resistance and frietion), the velocity of the train will be uniform. In this ease the train is said to have attained its greatest or maximum speed.
146. The traction or force with which an animal pulls depends upon the rate of his motion. A horse, for example, moving only 2 miles an hour, can draw with a far greater foree than when running at the rate of 6 miles an hour. The following table shows the relation between the speed and the traction of a horse :
table of thaction of a horse.

> Speed.

Traction.

"	3	"	"	125
"	$3 \frac{1}{2}$	"	"	104
"	4	"	"	83
"	$4 \frac{1}{2}$	"	"	$62 \frac{1}{2}$
"	5	"	"	$41 \frac{3}{4}$

Example 135.-What gross load will a horse draw travelling at the rate of four miles per hour on a road whose friction is $\frac{1}{2} 0$ of the whole load?
solution.
Here from the table the traction is 83 lbs ., which by the conditious of the question is $\frac{1}{2 /}$ of the gross load.
Hence load $=83 \times .50=1660 \mathrm{lbs}$. Ans.
Example 136.--At what rate will a horse draw a gross load of 1800 lbs . on a road whose coefficient of friction is $\frac{1}{10}$?

SOLUTION.

Here traction $=18 \frac{00}{8}=100 \mathrm{lbs}$., whence by the table the rate must be rather over $2 \frac{1}{2}$ miles per hour.

Example 137.-If a horse draw a load of 2500 lbs . upon a road whose cocfficient of friction is of, what traction will he sert, and how many units of work will he perform per minute?

> SOLETIOX.

Here, traction $=2 \frac{5 n}{30} 0=83 \frac{1}{3}$ lbs., and hence he moves-at a rate of four miles per hour.
The distance moved per minnte $={ }^{4 \times 5280 *}=352$ feet.
Hence units of work $=83 \frac{1}{3} \times 352=293331$. Ans.
Example 138.- What must be the effective horse porrer of a locomotice engine to carry a train weighing 70 tons upon a levt 1 rail at the steady rate of 40 miles per hour, neglecting atmospheric resistance and taking $\frac{1}{20}$ as the coefficient of friction? solution.
Here, weight of train $=70$ tons $=140000 \mathrm{lbs}$.
Space passed over per minute $=\frac{4}{60}$. miles $=\frac{40 \times 5250}{60}=3520$ feet.
Work of friction to one foot $=\frac{1}{2} \frac{1}{0}$ of $140000=\frac{140000}{200}=700$ units.
Work of friction per minate $=700 \times 3520=2404000$ units.
Units of work in one H. P. $=33000$.
Therefore H. P of locomotive $=\frac{700 \times 3520}{33000}=\frac{2464000}{33000}=74.66$. Ans.
Example 139.-A train weighing 120 tons.is carried with a nniform velocity of 30 miles per hour along a level rail ; assuming the friction to be 11 lbs . per ton, and neglecting the resistance of the atmosphere, what is the horse power of the locomotive?

SOLUTION.

Space passed over per minute $=\frac{30}{60}$ miles $=\frac{30 \times 5280}{60}=2610$ feet.
Work of friction to each foot $=120 \times 11=1320$ nnits.
Work of friction per minute $=1320 \times 2640=3181500$ units.
Hence H.P. $=\frac{3484800}{3500}=105$.6. Ans.
Example 140.-At what rate per hour will a train weighing 90 tons be drawn by an engine of 80 horse power, neglecting the resistance of the atmosphere and taking $\frac{1}{250}$ as the coefficient of friction?

SOLETION.

Work done by the engine per hour $=33000 \times 60 \times 80$.
Weight of train in $\mathrm{lbs} .=90 \times 2000=150000$.
Units uf work required to move the train through 1 foot $=\frac{1}{2 \overline{0} \mathrm{~V}}$ of 180000 $=720$.

Work expended in moring the train through 1 mile $=720 \times 5230$.
\therefore Number of miles per hour $=\frac{33000 \times 60 \times 80}{720 \times 5280}=41.66 . \mathrm{Ans}$.
Example 141.-A train mores on a level rail with the uniform speed of 35 miles per hoar ; assuming the H. P. of the locomotive to be 50 , the friction equal to 9 lbs . per ton, and neglecting atmospheric resistance, what is the gross weight of the train?

[^2]
solution.

Work of engine per hour $=33000 \times 60 \times 50$.
Feet moved over per hour $=33^{\circ} \times 5280$.
Work expended per hour in moving 1 ton $=35 \times 5250 \times 9$.
\therefore Weight of train in tons $=\frac{33000 \times 60 \times 50}{35 \times 5280 \times 9}=59.523$. Ans.
Example 142.-In what time will an engine of 100 II. P. move a train of 90 tons weigbt through a journcy of 80 miles along a level rail, assuming friction to be equal to 10 lbs . per ton, and neglecting atmospheric resistance?

solution.

Work expended in moving the train through 1 foot $=90 \times 10=900$ units.
Work expended on whole journey in moviug the train $=900 \times 6280 \times 80$.
Work of engine per minuto $=33000 \times 100$.
\therefore Number of minutes $=\frac{900 \times 6250 \times 80}{8000 \times 100}=115 \frac{5}{6}$ minutes $=1$ hour 55 minutes.

EXERCISE.

143. What gross load will a horse draw travelling at the rate of 2 miles per hour on a road whose coefficient of friction is $-\frac{1}{16}$? Ans. 2988 lbs,
144. What must be the H. P. of a locomotive in order that if may draw a train whose gross weight is 130 tons, at the uniform speed of 25 miles per hour, allowing the friction to be 7 lbs per ton, and neglecting atmospheric resistance?

Ans. II. P. 60.66.
145. A train weighs 75 tons, and moves with the uniform speed of 30 miles per hour on a level rail ; taking $\frac{\pi}{5} \frac{1}{0} \overline{0}$ as the coefficient of friction, and neglecting the resistance of the atmosphere, what is the horse power of the engine?

$$
\text { Ans. H. P. }=48
$$

146. In what time will an engine of $160 \mathrm{H} . \mathrm{P}$., moving a train whose gross weight is 110 tons, complete a journey of 150 miles taking friction to be equal to 7 lbs . per tou, ueglecting atmospheric resistance, and assuming the rail to be on a level plano throughout? Ans. 1 hour $55 \frac{1}{2}$ minntes.
147. At what rate per hour will a horse draw a load "iose gross weight is 2200 lbs . on a road whose coefficient of friction is $\frac{1}{20}$?

Ans. Rather over $3 \frac{1}{2}$ miles per hour.
148. From the table given (Art. 145) ascertain at what rate per hour a horse mast travel, when drawing a load, in order to do the greatest amount of work? Ans. 3 miles per hour.
149. At what rate per hour will a locomotive of 59 H. P. draw a train whose gross weight is 70 tons, neglecting a!mospheric resistance, taking $\frac{1}{2}$ तn as the cocflacieut of friction, and assuming the rail to be lerel ?

Ans. 26.78 miles.

147 When a body moves through the atmosphere ol any other fluid, it encounters a resistance which increases :

1st. In proportion to the surface of the moving body; 2nd. In proportion to the square of the velocity.
Thus 1st. If a board presenting a surface of 1 sq . foot in moving through the air neet with a cortain resistance, a board having a surface of 2 sq . feet will meet with double that resistance; s board having a surface of 3 square feet will meet with three times that resistance, \&c.
2nd. If a body moving 2 miles per hour, meet with a certain resistance, a body of the same size moving 4 miles por hour will meet with $\left(\frac{4}{2}\right)^{2}$, or 2^{2}, or 4 times that resistance.
If the velocity be increased 3 times; i. e., to 6 miles per hour, the resistance will be increased 9 times (i. e., 3^{2} times).
If the velocity be increased 7 times. (i. e., to 14 miles per hour,) the resistauce will be increased 7^{2} times, i.e., 49 times, \& e.
148. In the case of railway trains, the atmospheric resistance is about 33 lbs , when the train is moving at the rate of 10 miles per hour. It has been found, however, by recent experiment, that the atmospheric resistance encountered by a train in motion depends very much upon the length of the train.

Example 150.-When a train is moving at the rate of 10 miles per hour, it encounters an atmospheric resistance of 33 lbs .; what will be the resistance of the atmosphere when the train moves at the rate of 50 miles per hour?

SOLUTION.

Here the velocity increases 50 times, i. e., 5 times.
Hence the resistance increases 5^{2} times $=25$ times.
\because Resistance $=33 \times 25=825 \mathrm{lbs}$., i. e., 825 nnits of work are expended every foot in overcoming the atmospheric resistance.
Example 151.-If a train moving 7 miles per hour meet with an atmospberic resistance equal to 5 lbs., what resistance will it encounter if its speed be increased to 49 miles per hour?

BOLUTION.
Here the velocity increases 7 times, (i.e., $\frac{49}{7}$).
Hence the resistance increases i^{2} times $=49$ times.
\because Resistance $=5 \times 49=245$ lbs., i. e., 245 units of work are expeuded every foot in overcoming the atmospheric resistance.

Example 152.-If a railway train moving at the rate of 10 miles per hour encounters an atmospheric resistance of 33 lbs .; what must be the horse power of the locomotive in order that the train may move 60 miles per hour, neglecting friction and assuming the rail to be level?

SOLUTION.

Here the velocity is increased 6 times, since $98=6$.
Then the resistance is increased 36 times [Art. 147.]
Hence atmospheric resistanco $=83 \times 36=1188 \mathrm{ibs}$; 1. 0.1188 units of nork are expeuded in moving tho train througit 1 ft .

$$
60 \times 5230
$$

Number of feet train moves through in a minute $=\frac{6 \times 620}{60}=5280$.
$\left.\begin{array}{l}\text { Units of work required per minute } \\ \text { (1) overcome atmospheric resistance }\end{array}\right\}=1188 \times 82 \$ 0$.
$\because 11$. P. of locomotive $=\frac{1188 \times 5280}{33000}=190.08$. Ans.
Example 153.-What must be the Π. P. of a locomotive to move a train at the rate of 40 miles per hour on a level rail, taking atmospheric pressure as usual, (i. e., 33 lbs . when a train moves 10 miles per hour, and neglecting friction? sOLUTION.
Here velocity increases 4 times, and hence resistance increases 16 times.
Then resistance encountered $=33 \times 16=528=$ units of work required per foot.
Feet moved over per hour $=5280 \times 40$; hence units of work per hour $=$ $5280 \times 40 \times 528$.
Therefore H. P. $=\frac{628 \times 4 n \times 5280}{33 u v 0 \times 60}=56.32$. Ans.
Exavple 154.-What must be the II. P. of a locomotive to draw a train whose gross weight is 80 tons, along a level rail, with the uniform velocity of 40 miles per hour, taking atmospheric resistance and friction as usual?

EOLUTION.

Feet passed over per minute $=\frac{40 \times 5280}{60}=3520$.
Work of friction per minute $=80 \times 7 \times 3 ; 520=19 \% 1200$ units.
Work of atmospheric resistance $=33 \times 16 \times 3520=1858509$ units.
Therefore H. P. $=$ Work of friction \times work of atmosplierie resistanen Work of one 11. 1'.
$=\frac{1971200+1858560}{33000}=\frac{3829760}{33000}=116.0 \% 3$. Ans.
Example 155.-What must be the H. P. of a locomotive to draw a train, whose gross weight is 125 tons, along a level rail, with the uniform velocity of 42 miles per hour, taking friction as usual, and assuming that the atmospheric resistance encountered by the train is equal to 10 lbs ., when moving at the rate of 7 miles per hour?

solution.

Feet moved over per minute $=\frac{42 \times 5280}{\omega}=3506$.
Work of friction per minate $=125 \times 7 \times 3696=3234000$ units,
Work of atmospheric resist. per min. $=10 \times 36 \times 3695=1330500$ units
Then II. P. $=\frac{\text { Work of friction } \times \text { work of atmosjheric resistance }}{\text { Work of one } 11.1^{\prime}}=$
$\frac{3234000+1330560}{33000}=\frac{4564560}{33000}=135^{\prime 22}$. Ans.

E.JERCISE.

156. If a train encounters an atmospnericeresistance of 8 lbs. , when moving at the rate of 5 miles per hour, what resistance wili it encounter when its speed is increased to 45 mi.es per hour?

Ans. 648 lbs.
157. What must be the H. P. of a locomotive to draw a train at the rate of 30 miles per hour on a level rail, assuming that the atmospheric resistance is equal to 9 lbs ., when the train mores 6 miles per bour, and neglecting friction?

Ans. Н. P. $=18$.
158. What must be the II. P. of a locomotive to draw a train weighing 140 tons along a level rail with the uniform velocity of 36 miles per hour, taking friction as 7 lbs . per ton, and the resistance of the atmosphere 12 lbs ., when the train moves 9 miles per hour? Ans. H. P $=112.512$.
159. A train weighing 200 tons moves along a level rail with a uniform speed of 30 miles per hour; what is the H. P. of the eugine-friction and atmospheric resistance being as usual ?

Ans. H. P. $=135 \cdot 76$.
149. If a body be mored along a surface without friction or atmospheric resistance, the units of work performed are found by multiplying the weight of the body in lbs. by the rertical distance in feet through which it is raised.
Thus, if a body weighing 12 lbs . be mored 200 ft . along an inclined plane having a rise of 19 feet in 100 , the units of work performed will be 12×19 $\times 2=456$, because in moviug up the plane 200 feet, the body is raised through $19 \times 2=38$ feet.
150. When a train is moving along an inclined plane, and the inclination is not very great, the pressure on the plane is very nearly equal to the weight of the body. Hence we find the work duc to friction by Arts. 143-146, the work due to atmospheric resistance by Art. 14S, and the work due to gravity by Art. 149.

Example 160.-A train weighing 90 tons is drawn up a gradient having a rise of 3 feet in every 1000 feet, with the uniform speed of 40 miles per hour-neglecting friction and atmospheric resistance, what is the $\mathrm{H} . \mathrm{P}$. of the engine?

> solution.

Weight of train in lbs. $=90 \times 2000=180000$.
Feet travelled per minate $=\frac{40 \times 5280}{60}=3320$.
Certical distance moved through per minnte $=T^{3} 0^{3} 0$ of $3520=10-56 \mathrm{ft}$.
Linits of work due to gravity per minute $=10.56 \times 150000$.
\therefore H. P. $=\frac{10.56 \times 180000}{33000}=5 \pi \cdot 6$. Ans.

Example 161.-A train weighing 140 tons moves up a gradient having a rise of 3 feet in 1100 feet, with the uniform velocity of 36 miles per hour-neglecting atmospheric resistance and taking friction as usual, what is the II. P. of the locomotive? BOLETION.
Hero weight of traln in $\mathrm{lbs},=140 \times 2000=280000$; and speed per miQuto $=\frac{36 \times 5230}{60}=3168$ feet.

The units of work due per minute to friction $=140 \times 7 \times 3168=3104640$. lleight to which train is raised per miunte $=\pi^{3} \sigma$ of $3168=8.64$ feet.
Then units of work due per minnto to gravity $=8.64 \times 280000 \Rightarrow 2419900$.
\because 11. $\mathrm{P} .=\frac{\text { work due gravity }+ \text { work due friction }}{\text { Work of owo } 11.1 \text {. }}=\frac{8104640+2419200}{23000}=$

363340

$\frac{3623810}{33000}=167 \cdot 389 . \quad$ Ans.
Example 162.-A train weighing 100 ions moves up a gradient with a uniform velocity of 30 miles per bour, the rise of the plane being 3 feet in 1000 feet, and taking friction and atmospheric resistance as usual, what is the II. P. of the locomotive?
solution.
Here welght of train in lbs. $=100 \times 2000=300000$; space passed per minute $=\frac{30 \times 5280}{60}=2640$ feet, and elevation of train per miuute $=T U^{3} 0 \overline{0}$ of $2640=7.92$ feet.

Work of friction per minute $=100 \times 7 \times 2640=1945000$ units,
Work of atmospheric resistance per minute $=33 \times 9 \times 2640=781080$ units.
Work of gravity per minute $=7.92 \times 200000=1584000$ units .

$$
\because \text { II. P. }=\frac{1848000+784080+1584000}{33300}=\frac{421,6080}{33000}=12 \cdot \cdot 76 . \quad \text { Ans. }
$$

Example 163.-A train weighing 130 tons descends a gradient having a rise of 7 feet in 2000 feet, with the uniform velocity of 60 miles per hour-taking atmospheric resistance as usual, and the coefficient of friction $\frac{1}{z U 0,2}$ what is the horse power of the locomotive?

> soLUTION.

Here weight of train in lbs. $=130 \times 2000=200000$; space passed over per minute $=\frac{60 \times 6280}{60}=5250$ feet. ; increaso in the velocity $\Rightarrow \frac{f 0}{\frac{10}{U}}=6$; and ver. tical fall of train per minute $=\frac{7 \pi}{2 \pi}$ of 5230 feet. $=18.48 \mathrm{ft}$.

Then work of friction per minute $=\frac{1}{200} \times 260000 \times 5280=1200 \times 5230=$ CSG4000 units.

Work of atmospheric resistance per minnte $=33 \times 36 \times 5250=02.28,20$ units.
Work of gravity per miunte $=18.43 \times 2 f 0000=4804800$ units.
Then, since the train descends the gradient, gravity acts with the ngine. Work of friction + work of atmos. risiat. - work of gravity
Hence I. $\Gamma^{\prime}=\frac{\text { Work of oue 11. } 1^{\prime} \text {. }}{}$
\because 11. $1 .=\frac{6864000+6272040-4804800}{33000}=\frac{8331840}{33000}=252 \cdot 4 \%$. Ans.

Exayple 164.-A train weighing 80 tons mores along a gradient with the uniform speed of 40 miles per hour-assuming the inclination of the gradient to be 3 ft . in 1000 ft ., and taking friction and atmospheric resistance as usual, what will be the H. P. of the locomotive :
lst. If the train move ap the gradient, and ind. If the train move down the gradient?

SOLUTION.

Here weight of train in lbs. $=80 \times 2000=160000$; space passed over per minnte $=\frac{40 \times 5280}{60}=3520 \mathrm{ft}$. ; velocity is increased $\frac{40}{10}=4$ times, and vertical ascent or descent of train T_{0}^{3} of $3520=10.56 \mathrm{ft}$.

Work of friction $=80 \times 7 \times 3520=1971200$ units per minate.
Work of atmospheric resistance $=33 \times 16 \times 3520=1855560$ units per min. Work of gravity $=10 \cdot 56 \times 160000=1689600$ units per minute.
Then II.P. $=\frac{\text { Fork of friction }+ \text { work of atmos. resist } \pm \text { work of gravity. }}{\text { Work of one H }}$
Train ascending, H.P. $=\frac{1971200+1858560+1689600}{33000}=\frac{5519360}{33000}=161 \cdot 253$.
Train descending, H. P. $=\frac{1971200+1858560-1689600}{33000}=\frac{2140160}{33000}=64.853$.
Exampte 165.-A train weighing 110 tons ascends a gradient having a rise of $\frac{1}{8}$ in 100 -taking friction as asual, and neglecting atmospheric resistance, what is the maximum speed the train will attain if the H. P. of the locomotive be 120 ?

SOLETION.

Here weight of train in lbs. $=110 \times 2000=220000$.
Werk of friction in one mile $=110 \times 7 \times 5.50=4065600$ units.
Work of gravity in one mile $=\frac{-1}{8} 00$ of $5250=6.6 \times 220000=1552000$ units.
Total work of resistance in one mile $=4065606+1452000=5517600$ units .
Total work of eugine per hour $=33000 \times 60 \times 120=23,600000$ units.
\therefore Number of miles per hour $=\frac{23 i 60000)}{551 i 600^{-}}=43.06$ Ans .
Example 166.-If a horse exert a traction of $120 \mathrm{lbs.}$, what gross load will he pull up a hill whose rise is 17 feet. in 1000 ft ., assuming the coefficient of friction to be $\frac{1}{1} \sigma$?

solution.

Work of horse in moving the load orer $1000 \mathrm{ft} .=120 \times 1000=120000$ units.
Work of friction in moving 1 lb . over 1000 ft . $=1 \times \frac{1}{10} \times 1000=100$ units.
Werk of gravity in moving 1 lb . over $1000 \mathrm{ft}=1 \times 17=17$ units.
Tutal work in moving 1 lb . over $1000 \mathrm{ft}=$ work of friction + work of grarity $=1 \omega \omega+17=11 /$ units.
\therefore Number of lls.drawn by horse $=120000=1025 \cdot 641$. Ans.
Example 167.-What backward pressnre is exerted by a horse in guing down a hill which has a rise of 7 feetin a 100 , with a load whose gross weight is 2000 lbs ., assuming $\frac{1}{35}$ to be the coefficient of friction?

SOLUTIOX,

Here on a level plane the friction would be $\frac{1}{35}$ of $2000 \mathrm{lbs} .=67 \cdot 14 \mathrm{lbs}=$ units of work for each foot.

Work of gravity $=r^{7} \sigma 0$ of $2000=140$ units to each foot.
Therofore, the backward pressure is $140-57 \cdot 14=82 \cdot 88 \mathrm{lbs}$. Ans.

EXERCISE.

168. What backward pressure will a horse exert in going down a hill which has a rise of 9 feet in 100, with a load whose gross weight is 1200 lbs ., assuming the coeflicient of friction of the road to be $\frac{1}{3} \sigma$? Ans. 68 lbs.
169. What gross load will a horse exerting a traction of 150 lbs . draw up a hill whose inclination is 3 in 100 -assuming the coefficient of friction to be $\frac{1}{-6}$? Ans. 1551.72 lbs.
170. What will be the maximum speed attained by a train weighing 200 tons, drawn by a locomotive of $160 \mathrm{H} . \mathrm{P}$. up a gradient having a rise of $\frac{1}{6}$ in 100 -taking friotion as usual and neglecting atmospheric resistance?

$$
\text { Ans. } 29.032 \text { miles per hour. }
$$

171. A train weighing 88 tons moves up a gradicnt having a rise of $\frac{1}{3} 100$ with the uniform velocity of 20 miles per hour -taking friction and atmcspheric resistance as usual, What is the H. P. of the locomotive?

$$
\text { Ans. II. P. }=71 \cdot 182 .
$$

172. A train weighing 95 tons descends a gradient having a fall of 3 in 1000 with the uniform speed of 40 miles per hour -taking friction and atmospheric resistance as usual, what is the H. P. of the locomotive? Ans H. P. $=113 \cdot 742$.
173. A train weighing 125 tons moves along a gradient having a rise of $\frac{1}{4}$ in the 100 with the uniform speed of 25 miles per hour-taking friction and atmospheric resistance as usual, what is the II. P. of the engiue,

1st. When the train ascends the gradient?
2 nd. When the train deseends the gradient?
Ans. Going up, H. P. $=113.75$; going down, 1. P. $=30 \cdot 416$.
151. For finding the H. P., maximum speed, weight of train, \&c., as in the foregoing examples, by representing the variable quantities, such as weight, rate of motion, inclination of plane, \&.c., by letters, we may easily deduce formulas by means of which the work required to solre such problems will be very materially abreviated.

Thus, since the number of feet moved per minate is always $=$ rate per hour in miles $\times 5280$ $=$ rate per hour in miles $\times 88$; therefore, whatever may be the rate, 88 is a constant maltiplier.
Let $r=$ rate per hour in miles, then $88 r=$ rate per min.in ft . $v=$ weight of train in tons, then $2000 w=$ weight of train in lbs.
$h=$ rise of the plane in every 100 feet.
$f=$ friction per ton.

- $R=$ given atmospheric resistance at given speed, s.

Then units of work dne per minute to friction $=f w \times 88 r$.
" "
$\times 88 r=20 \mathrm{k} w \times 88 r$.
Units of work due per min. to atmos. resist. $=R\left(\frac{r}{s}\right)^{2} \times 88 r$.
Units of work per min. in given H. P. $=$ H. P. $\times 33000$.
Hence H. P. $\times 33000=f w \times 88 r+R\left(\frac{r}{s}\right)^{2} \times 88 r \pm 20 h w \times 88 r$, and factoring this, we get:
H. P. $\times 33000=\left(f w+R\left(\frac{r}{s}\right)^{2} \pm 20 h w\right) 88 r$.

Therefore H. P. $=\left(f w+R\left(\frac{r}{s}\right)^{2} \pm 20 h w\right) \frac{88 r}{33000}$
Or H. P. $=\left(f w+R\left(\frac{r}{s}\right)^{2} \pm 20 h w\right) \frac{r}{375}$ (I. $)$
From this we obtain by transposition and reduction, and neglecting atmospheric resistance,

$$
\begin{aligned}
w & =\frac{\text { H. P. } \times 375}{(f+20 h) r}(\text { II. }) \\
r & =\frac{\text { H. P. } \times 375}{(f \pm 20 h) w}(\text { III. })
\end{aligned}
$$

Since f is commonly $=7, R .=33$, and $s=10$, these formulas become respectively,

$$
\begin{align*}
& \text { H. P. }=\left(i w \pm 33 r^{2} \pm 29 h w\right) \frac{r}{3 i 5} \quad \text { (IV. } \\
& 2=\frac{\text { H. P. } \times 35}{(7 \pm 20 h) r} \tag{V.}\\
& r=\frac{H . F \cdot \times 375}{(7 \pm 20 h) w} \tag{VI.}
\end{align*}
$$

Exampla 174.-A train weighing 140 tons moves along a gradient having a riso of $\frac{t}{4}$ in 100 with the uniform speed of 30 miles per hour; taking friction and atmospheric resistance as usual, what is the H. P. of the locomotive; 1st when the train moves up the gradient? 2nd, when the train moves down the gradient?
SOLUTION.

$$
\begin{aligned}
\text { Here } w=140, r=30, h= & \frac{1}{4} \\
H .1 & =\left(7 v+\cdot 33 r^{2} \pm 20 h w\right) \frac{r}{375} \\
& =\left(7 \times 140+33 \times 30^{2} \pm 20 \times \frac{1}{4} \times 140\right) \frac{-30}{375} \\
& =(980+297 \pm 700) \frac{2}{25} \\
& =\frac{1977 \times 2}{25} \text { or } \frac{577 \times 2}{25} \\
& =158.16 \text { or } 46.16 . \text { Ans. }
\end{aligned}
$$

Exayple 175.-A train drawn by a locomotive of 80 II. P. moves along an inclined plane having a rise of $\frac{1}{6}$ in 100 with a uniform velocity of 45 nciles poi ¿our; taking friction as usual and neglecting atmospheric resistance, what is the weight of the train?

> BOLUTION.

IIcre II. P. $=80, r=45$, and $h=\frac{1}{6}$.
Then by formula (\mathbf{V}.) $w=\frac{\text { H.P. } \times 375}{(7 \pm 20 h) r}=\frac{30 \times 375}{\left(7 \pm 20 \times \frac{1}{6}\right) 45}=\frac{30000}{\left(7 \pm 3 \frac{1}{3}\right) 45}=$ $\frac{30000}{10 \frac{1}{3} \times 45}$ or $\frac{30000}{3 \frac{2}{3} \times 45}=\frac{30000}{4605}$ or $\frac{30000}{165}=64.51$ tons if the train is going ap the gradient, or 181.81 tons if the train is going down the gradient.
For practice in the application of these formulas, work any of the foregoing problems.

THE MODULUS OF A MaCHINE.

152. The modulus of a machine is the fraction which expresses the value of the work done compared with the work applied, the latter being expressed by unity.
Thus if $\frac{1}{7}$ of tho work applied to a machine be lost in transmisslon, the modulus or useful work of that machine is $\frac{6}{7}$; if ${ }_{6}^{3}$ bo lost In transmission, tho modulus of the machine is $\frac{2}{5}$, \&c.
153. The amount of work lost depends on friction, rigidity of cordage, de., and in some machines is more than half of the whole work applied. The following table gives the moduli of machines for raising water:

TABLE OF MODULI.
MACHINE.
MODULCS.
Inclined chain pump, $\frac{2}{5}$
Upright
$\frac{2}{5}$
$\frac{1}{2}$
Bucket wheel,
Archimedian screw,.................................. $\frac{7}{10}$
Pumps for draining mines,....................... $\frac{2}{3}$
Example 176.-If 7 H. P. be applied to an upright chain pump, how many gallons of water will be raised per hour to the heigh1 of 50 feet ?

solutiox.

Work applied per hour $=33000 \times 7 \times 60$.
Work done $=33000 \times 7 \times 60 \times \frac{1}{2}$, since the modulus of the upright chain pump is $\frac{1}{2}$.

Work expended in raising 1 gallon of water 50 feet $=10 \times 50$.
\therefore Number of gallons $=\frac{33000 \times 7 \times 60 \times \frac{1}{2}}{10 \times 50}=13860$. Ans.
Example 177.-What must be the H. P. of an engine to pump 9000 cubic feet of water per hour from a mine whose depth is 110 feet?

SOLUTION.

Work of raising water per hour $=9000 \times 62 \frac{1}{2} \times 110$.
Effective work of one H. P. per hour $=33000 \times 60 \times \frac{2}{3}$.
H. P. $=\frac{9000 \times 62 \frac{1}{2} \times 110}{33000 \times 60 \times \frac{2}{3}}=\frac{61875000}{1320000}=40.8 \%$. Ans.

WORK OF WATER.

154. Then water falls from a height upon the floatboards of a wheel, \&c., the quantity of work it performs is found by multiplying the weight of the water by the height through which it falls. (See Chap. VIII.)

STEAM ENGINES AND WORK OF STEAM.

155. A constant porrer is obtained from the confinement and regulated escape of steam in the various kinds of steam engines.
156. Steam engines, though differing very materially from one another in detail, are all modifications of two distinct machines, riz :-

1st. The high pressure stean engine, or non-condensing engine.
2nd. The low pressure steam ongine. or condensing engine.
157. The high pressure engine, whech is the simpler form of the two, consists essentially of a strong vessel or boiter in which the steam is generated, a cylinder, in which a tightly fitting pision moves backwards and forwards, an arrangement of valves so, adjusted as to admit the steam alternately above and below the piston and also alternately open and close a way of escape into the air, and lastly various contrivances by which the oscillations of the piston may be converted into other kinds of motion suited to the work the engine is to perform.
158. In the low pressure engine, the space into which the steam drives the piston is converted, by means of a condensing chamber, into a vacuum, so that the motion of the piston is not resisted by atmospheric pressure, and steam gencrated at a low temperature can therefore be used.
159. The varieties of the low pressure engine are chiefly two,-the single acting and the double acting engine.
160. In the single acting engine the piston is driven forward by means of steam acting against a vacuum, and backward by the counterpoising weight of the machinery. The machine is therefore in action only half the time of the movenient.
161. In the double acting engine the piston is driven both backward and forward by the steam acting against a vacuum on the opposite side, and the maehine therefore acts continuously.
162. In the high pressure engine the piston moves both forwards and backwards against the pressure of the air.
163. The following are the leading ideas that enter into the construction and operation of the steam engine.
I. When steam is condensed, a vacuum is produced Into which the adjacent bodies have a tendency to rush.
II. When cold water is placed in contact with steam, it condenses it with great rapldity, producing a vacuum; and this vacuum may be produced without cooling tho cylinder containing the stean, if a communication be kept up between this and a vessel containing water.

1II. The vapor of water exerts a consiterable pressuro even at comparatively low temperatures; for example, far below its boiling point.
IV. If the pressmre exerted by the piston on a quantity of steam confined in a cylinder be less than tho clastic force of the steam, the steam will expand and give motion to the piston.
Y. If a vacuum be produced in a cylinder behind the piston, the atmospheric pressure will drive tho piston backwards.
VI. The same quantity of fuel will convert the same quantity of water into steam whatever may be the pressure on its surface.
VII. The higher the pressure under which steam is generated, the smaller its bulk, and the greater its elastic force.
VIII. Tho same quantity of water converted into steam at any pressure will produce tho samo mechanical effeet; i. e., if tho pressure be low, the steam generated is large in quantity and possessed of comparatively little elastic torce; if the pressnre be high, the steam generated is of small quantity, but of high elastic force.
IX. One cubic inch of water converted into vapor produces 1696 cubic inches of steam, and, sinco the pressure of steam is, under ordinary circumstances, equal to that of the atmosphere, the mechanical forco produced by the evaporation of one cubic inch of water is sufficient to raise 15 lbs. through 1696 inches or $141 \frac{1}{2}$ feet. This is the same, in effect, as raising $141 \frac{1}{\text { times }} 15$ lbs., i. c., 2120 lbs, through one foot. The conversion of one cubie inch of water into steam therefore does work equivalent to raising rather moro than one ton weight through one toot. Deducting loss by friction and other causes, about 60 per cent. of this total force is available for use. One cubic toot of water evaporated in one hour will hence do work equal to about 60 per cent. of 1728 times 2120 units, or in other words about 2000000 units, which is about equivalent to the work of one horse for the same space of time.

A boiler then of $7,8,9,10, \& e$., horse power is a boiler capable of evaporating $7,8,9,10$, \&c., cubic teet of water per hour.

X . The common allowance of tuel for the steam engine is 10 lbs . of bituminous coals for every horse power of the boilcr, (i. e., every cubic foot of water it evaporated per hour.) In Cornwall, however, this offect has been produced by the consumption of 5 lbs. of coal only. In the American boilers about $6 \frac{1}{3}$ lbs. of anthracite coal suffice for the evaporation of one enbic foot of water, or, in other words, the combustion of 1 lb . of coal is suflicient to evaporate 10 lbs . of water.
164. High pressure engines are commonly used where it is desirable to have the engine as simple, cheap, compact and light as possible, as the condensing apparatus renders the engine more costly and cumbrous. The high pressure engine is, however, far more liable to burst and get otberwise out of repair.
165. The units of work performed per minute by a stcam engine are found by multiplying together the pressure per square inch on the boiler, the area of the piston in inches, the length of the stroke of the piston in feet, and the number of strokes per minute.
Thus let the pressure exerted on each square inch of the piston be 30 lbs., and let the piston make 40 strokes por minute of 3 feet each, also let the area of the piston be 100 square inches:
Now if a weight of 30 lbs . be placed on each square inch of the surface of the piston, the elastic force of the steam will be just sufficient to lift the
londed piston throngh thö length of the stroko in opposition to gravity, then the work performed on 1 sq . in. of the piston would be $30 \times .3$ for each stroko.
Work performed on wholo piston would be $30 \times 3 \times 100$ for each stroke. Work " " " " $30 \times 3 \times 100 \times 40$ perminute.
166. In the high pressure engine, the pressure of the atmosphere, about 15 lbs . to the square inch, acts in opposition to the pressure of the steam; and in the low pressure or condensing engine a pressure of about 4 lbs , to the square inch of the piston is exerted by the vapor in the condensing chamber. Besides these, a resistance of 1 lb . per square inch is commonly allowed for the friction of the piston. Deducting these allowanees from the total pressure, we obtain the effective pressure ; and we must further make an allowance of $\frac{1}{4}$ of this for the friction of the whole engine.

Thus in the high pressure engine :

$$
\text { Load }+\frac{1}{7} \text { load }+1+15=\text { uhole pressure. }
$$

In the condensing engine :

$$
\text { Load }+\frac{1}{7} \text { load }+1+4=\text { whole pressure. }
$$

For example,-if the whole pressure be 58 lbs. per square inch.
Then for the high prossure elngino $58-1-15=42$ is the working pressure on the piston, and 42 is $\frac{8}{7}$ (i. e., load $+\frac{1}{7}$ load) of the useful pressure. and hence useful or effective pressure $=42 \div \frac{9}{7}=3 \mathrm{C}_{3}^{3}$.
For the low pressure engino $58-1-1=53=$ working pressure on the piston, and 53 is $\frac{8}{7}$ of the niseful pressure. Therofore useful or effective pressure is $53 \div \frac{8}{7}=46 \%$.
167. For finding the II. P. of a steam engine, let $p=$ uscful pressure in lbs. on each square inch of the piston, $a=$ area of piston, $l=$ length of piston stroke in fcet and $n=$ number of strokes per minute.

$$
\begin{aligned}
\text { Then II. P. } & =\frac{p a l n}{33000} \cdot(\mathrm{I} .) \\
p & =\frac{\text { II. P. } \times 33000}{a l n} \cdot \text { (II.) } \\
a & =\frac{\text { H. P. } \times 33000}{\text { pln }} \cdot \text { (III.) } \\
n & =\frac{\text { I. P. } \times 33000}{p^{\text {al }}} \cdot \text { (IV.) } \\
l & =\frac{\text { I. P. } \times 33000}{\text { pan }} .
\end{aligned}
$$

Example 178.-The piston of an engine has an area of 250 inches, and makes 110 strokes, of 5 feet each, per minute-taking the useful pressure of the steam as 28 lbs . per sq. inch, what is the H. P. of the enginc ?

> SOLUTION.

1 Here $p=28, a=250, n=110$, and $l=5$.
Then (Formnla I.) H. P. $=\frac{28 \times 250 \times 110 \times 5}{33000}=116 \frac{3}{3}$. Ans.
Example 179.-The piston of a bigh pressure engine has an area of 1200 inches, and makes in each minute 30 strokes of 7 feet each-taking the gross pressure of the steam as 48 lbs . per square inch, what is the H. P. of the enginc?

SOLUTION.
Here $48=p+\frac{1}{7} p+15+1$, or $\frac{8}{7} p=32$, and hence $p=32 \div \frac{8}{7}=281 \mathrm{bs}$.
Then $p=28, a=1200, n=30$, and $l=7$.
By Formula I., II. P. $=\frac{28 \times 1200 \times 30 \times 7}{35000}=213.81$. Ans.
Example 180.-The piston of a low pressure engine has a diameter of 20 in., and makes 60 strokes of 4 ft . each, per minutethe pressure of the steam on the boiler is 45 lbs. to the sq. inch, what is the H. P. of the engine?

SOLUTION.

Here $45=p+\frac{1}{7} p+4+1$, or $\frac{8}{7} p=40$, and hence $p=40 \div \frac{8}{7}=35$.
$a^{*}=10^{2} \times 3 \cdot 1416=100 \times 3 \cdot 1416=314 \cdot 16$.
Then $p=35, a=314 \cdot 16, n=60$, and $l=4$.
Н. Р. $=\frac{35 \times 314 \cdot 16 \times 60 \times 4}{3000}=79.968$. Ans.

Example 181.-In a steam engine of 32 horse power, the area of the piston is 500 inches, the length of the stroke 4 feet, and the useful pressure of the steam 33 lbs . to the sq. inch, how many strokes does the piston make per minute?

SOLUTION.

Here H. P. $=32, u=500, l=4$, and $p=33$.
Then (Formula 1V.) $n=\frac{\text { H. P. } \times 33000}{\text { pal }}=\frac{32 \times 33000}{500 \times 4 \times 30}=16$. Ans .
Example 182.-In a low pressure steam engine of 190 H. P. the area of the piston is 1000 inches, the length of stroke 6 feet, and the number of strokes per minute 110 , what is the useful pressure per square inch ou the piston, and also what is the gross pressure of the steam?

[^3]
BOLCTION.

Here H. P. $=190, a=1000, \ell=6$, and $n=100$.
Then(Formula II.) $\left.p=\frac{190 \times 33000}{1000 \times 6 \times 110}=9\right\}$ lbs. $=$ useful pressure.
And pressure on boiler [Art. 166] $=9 \frac{1}{2}+\frac{1}{7}$ of $9 \frac{1}{2}+4+1=15 \frac{5}{7} \mathrm{lbs}$.
Example 183.-In a bigh pressure engine the piston has an area of 800 inches, and makes 40 strokes per minute, of 10 feet each, what must be the pressure of the steam on the boiler in order that the engine may pump 120 cubic feet of water per minute from a mine whose depth is 400 feet-making the usual allowance for friction and the modulus of the pump?

solutiox.

Here work done per minute $=120 \times 62.5 \times 400=3000000$ units.
Work applied, i. e., work of engine $=3000000 \div \frac{2}{3}=4500000$ units $=11$. P. $\times 33000$.

Then by Formula I1. $p=\frac{\text { II. 1'. } \times 33000}{a \ln }=\frac{4500000}{800 \times 10 \times 40}=141_{1}^{1} \mathrm{lbs} .=$ nseful pressure.
And Art. 166, gross pressure $=14 \frac{1}{16}+\frac{1}{7}$ of $14 \frac{1}{16}+15+1=32_{14}^{1} 1 \mathrm{lbs}$. Ans.
Example 184.-The piston of a high pressure engiue has an area of 600 inches, and makes 20 strokes per minute, each 8 feet in length, gross pressure of the steam 52 lbs . to the square inch. How many gallons of water per minute will this engine pump from a mine whose depth is 500 feet, making the usual allowance for friction and the modulus of the plimp?

SOLUTION.

Here $a=600, l \Rightarrow 8, \eta=20$, and since $\check{2} 2=p+\frac{1}{7} p+1 \tilde{j}+1 ;{ }_{7}^{8} p=3 \neq$ and $p=31 \frac{1}{2}$.

Work of engine per minute $=$ paln $=31 \frac{1}{2} \times 600 \times 8 \times 20=3021000$.
Useful work per minute $=3024000 \times \frac{2}{3}=2016000$.
Work of pumping I gallon of water to height of 500 feet $=10 \times 500=$ 5000 units.
\therefore No. of gatlons jumpel per minuto $=2055000000403$. Ans.

ExERCISE.

185. The y iston of a low pressure steam engine is 40 inches ir diameter and makes 40 strokes of 5 feet each per minute ;the gross pressure of the steam is 37 lbs . per square inch what is the II. P. of the engine? Ans. $213 \cdot 248$.
186. The piston of a ligh pressure engine is 20 inches in diameter and makes 50 strokes of 4 feet per minute; taking the gross pressure of the steam as 40 lbs , per squaro inch and making the nsual allowance for friction, what is the II. P. of the engine? Ans. 39.981.
187. The piston of an engine has an area of 2400 inches and makes 16 strokes per minute, each 10 feet in length; the useful pressure of the steam on the piston is 20 lbs . per square inch, what is the H. P. of the engine?

Ans. 232-72.
188. In a high pressure engine of 140 H. P. the piston has an area of 1000 inches, and makes 20 strokes, of 5 feet each, per minute; what is the useful pressure of the steam on the piston and also the gross pressure per square inch?

Ans. Useful pressure $=46.2 \mathrm{lbs}$. per sq. in. Gross pressure $=68.8$ lbs. per sq. in.
189. In a low pressure engine of $100 \mathrm{H} . \mathrm{P}$. the piston has an area of 200 inches, and makes 40 strokes per minute; the gross pressure of the steam is 45 lbs . per square inch. Required the longth of the stroke made by the piston.

Ans. $11 \cdot 785$ feet.
190. In a high pressure engine of 80 H . P. the piston makes 44 strokes per minute, each 6 feet in length, and the gross pressure of the steam is 56 lbs . per square inch. What is the area of the piston?

Ans. $285 \cdot 714$ sq. in.
191. How many. cabic feet of water may be pumped per minute from Ω mine whose depth is 500 feet by an engine in which the piston has an area of 2000 inches, and makes 30 strokes per minute, each 8 feet in length, the useful pressure of the steam being 40 lbs . per square inch, and the usual allowance being made for the modulus of the pump ?

Ans. $409 \cdot 6$ cubic feet.
168. In all the modifications of the steam engine, the real source of work is the evaporating power of the boiler ; the amount of work done by the engine depending not only upon the rapidity with which the water is evaporated, but also upon the temperature, and consequently the pressure under which the steam is produced. The following is a specimen of an experimental table, given by Pambour, showing the relation between the pressure, temperature, and volume of the steam produced by one cubic foot of water. By means of this table, we are enabled to ascertain the volume of the steam produced by a given quantity of water, when we know the pressure or temperature under which it is formed.

[^4]water which produced it. It will be observed that the lower the temperature, or what amounts to the same thing, the less the pressure under whieh the steam is formed, the greater its volume. Thus under the asual atmospheric pressure of 15 lbs . to the equare inch [or at the commen temperature of bolling water, 212° or 213° Fahr.], a cubic foot of water produces 1669 cubic feet of steam. 1f, however, the pressure be decreased to 1 lb. to the square inch, the steam is formed at the temperature of 103° Falir., and occuples 20954 cubic feet; while if the pressure bo increased to 30 lbs , to the squaro inch, the temperature required for the production of the steam rises to 251° Fahr, and the steam only occuptes 88 ? cubic feet.

Note 2.-It has been shown by numerousexperiments that the quantity of fuel requisite for the evaporation of a given duantity of water is invariably the same, no matter what may be the pressure under which the steam is produced. Hence It is obvious that it is most advantageous to employ steam of a high pressure.

TABLE

sHowing the volume of steam produced by one cubic foot or Water at the corresponding pressure and temperature.

1	103°	20954	55	2858	506
5	$161{ }^{\circ}$	462.4	60	$294{ }^{\circ}$	467
10	$192{ }^{\circ}$	2427	65	2990°	434
15	213°	1603	70	304°	406
20	228°	1280	75	309°	381
25	241°	10.12	80	813°	359
30	$251{ }^{\circ}$	882	85	318°	340
35	260°	765	90	322°	323
40	269°	677	9\%,	326°	307
45	2766°	608	100	330°	293
50	282°	552	105	$383{ }^{\circ}$	281

169. If we let $a=$ arca of the piston in square inches. $l=$ length of stroke made by the piston. $n=$ number of strokes made per minute. $p=$ effective pressure to cach square inch of the piston.
$c=$ cubic feet of water evaporated per minute.
$v=$ volume of one cubic foot of water in the form of steam under the given pressure p.

Th. n to find a, l, n, p, c, or v, when the others are given, we proceed as follows:

When p is given, v is found by the table.
Now the cubic feet of steam produced per minute $=c v$. Cubic fcet of steam used at each stroke of the piston $=\frac{a l}{144^{*}}$ \therefore cubie feet of steam used in n strokes $=\frac{n a l}{144}=$ also, the steam evaporated or used per minute.

Hence $\frac{n a l}{144}=c v$. and from this by reduetion we obtain $l=\frac{144 c v}{n a} ; n=\frac{144 c v}{a l} ; a=\frac{144 c v}{n l} ; c=\frac{n a l}{144 v}$, and $v=\frac{n a l}{144 c}$

When v is known p may be found by the table.
Example 192.-The piston of a steam engine has an area of 200 square inches and makes a stroke of 4 feet in leng th, the boiler evaporating 3^{3} of a cubic foot of water per minute, under a pressure of 40 lbs . to the square inch. What number of stroles per minnte does the piston make?

> solution.

Here $a=200, l=4, c=\frac{3}{10}=3$, and $p=40$; also from table $v=677$.
Then $n=\frac{144 c n}{a l}=\frac{144+3+667}{200+4}=36 \cdot 55 \mathrm{~S}$ or $=362 . \quad$ Ans.
Exayple 193.-The piston of a steam engine has an area of 1000 inches, and makes 10 strokes per minute, each 3 feet in length, the boiler evarorates $\cdot 4$ of a cnbic foot of water per minute. What is the pressure under which the steam is generated?

> solution.

Here $a=1000, l=3, n=10$, and $c=\cdot 4$.
Then $v=\frac{r a l}{14 c c}=\frac{10 \times 1000 \times 3}{144 \times \cdot \frac{1}{2}}=521$, whence by the table, p is between 50 and 55^{5}, or about 53 lbs .

Exayple 194. The piston of a steam engine has an area of 80 inches, and makes 20 strokes per minute; the boiler evaporates ${ }^{1} 5$ of a cubic foot of water per minute under the pressure of 50 ibs. to the square inch. Required the length of the stroke made by the piston.

[^5]
GOLUTION.

Here $a=80, n=20, c=1$ and $p=60$ and (table) $v=5.2$.
Then $l=\frac{144 c v}{n a}-\frac{144 \times \cdot 1 \times 552}{20 \times 80}=4.968 \mathrm{ft} .=4 \mathrm{ft}$. 11 f inches. Aus.
Example 195.-The boiler of an engine evaporates $\frac{?}{f}$ of a cubic foot of water per miaute under a pressure of 45 Ibs . to the square inch; the piston has an area of 250 inches, and makes a stroke 4 feet in length. Required the number of strokes made by the piston per minute.

SOLUTION.

Here $a=250 . l=4, c=4, p=45$, and hence (table) $v=608$.
Then $n=\frac{144 c v}{a l}=\frac{144 \times 4 \times 608}{250 \times 4}=35^{\circ} 0208$,i.c. 35 strokes perminute. Ans. EXERCISE.
196. The boiler of a steam engine evaporates $\frac{4}{8}$ of a cubic foot of water per minute under a pressure of 65 lbs . to the square inch. If the piston has an area of 144 square inches, and makes strokes 5 feet in leagth, how many strokes aro mado per minuto?

Ans. 63•44
197. The piston of an engine has an area of 288 inches, and makes 7 strokes per minute. If the boiler evaporates $z^{2} \sigma$ of a cubic foot of water per minute under a pressure of 55 lbs . to the square inch, what is the length of tho stroke of the piston?

Ans. $2.5 \frac{3}{10}$ feet.
198. The piston of an engine makes 10 strokes of 6 feet each per minute ; tho boiler evaporating $\frac{1}{2}$ a cubic foot of water per minuto under a pressure of 25 lbs . to the square inch, what is the area of the piston? Ans. 1250.4 inches.
199. In a steam engine the piston having an area of $\tau 20$ inches makes 20 strokes, of 3 feet each, per minute, what volume of water converted into steam under a pressure of 20 lbs . to the square inch, is evaporated per minute by the boiler? Ans. $\frac{1}{6} \frac{5}{2}$ of a cubic foot.
200. The piston of a steam engine has an area of coo inches, and makes 12 strokes, of 10 feet each, per minute. Now if the boiler evaporates 1 cubic foot of water per minute, what is the volume of the steam produced per minute at the pressure under which it is generated?

Ans. Volume $=500$ cubic feet.
Pressure $=$ nearly 55 lbs . to the square inch.
170. To find the useful H. P. of an engine when u, n, l, c, and v are given, we proceed as follows:

Find the pressure per square inch of the stcam from the Table, and thence Art. 166 the usefiel loud on each square inch of the piston; find also when required any of the other quantities, a, n, or i, and then opply the rules given in Arl. I67.

Example 201.-What is the useful load per square inch on the piston, and what is the effective horse power of a high pressure engine in which the area of the piston is 200 inches, the length of stroke 6 feet, the effective evaporation of the boiler $\frac{2}{5}$ of a cubic foot per minute, and the pressure of the steam 70 lbs . to the square iuch?

SOLUTION.

By Art. $166,70=\frac{8}{7} p+15+1$, and lience $p=54 \div \frac{8}{7}=47 \cdot 25=$ useful oad. By Art. 169, $n=\frac{144 c v}{a l}=\frac{144 \times 4 \times 406}{200 \times 6}=19 \cdot 488$.
Hence we have $n=19 \cdot 488, p=4 i \cdot 25, a=200, l=6$.
Then Art. 167, I. P. $=\frac{p a l n}{33000}=\frac{47 \cdot 25 \times 200 \times 6 \times 19.488}{33000}=83 \cdot 48$. Ans.
Example 202.-What is the effective horse power of a low pressure engine in which the piston has an area of 288 inches and makes every minute 16 strokes, the boiler converting $\frac{1}{2}$ of a cubic foot of water per minute into 304 cubic feet of steam?

SOLUTION.

Since $\frac{1}{2}$ of a cubic foot of water produces 304 cubic feet of steam, 1 cubic foot of water would produce 608 cubic feet of steam, and licnce [Table) the gross pressure of the steam is 45 lbs . to the square inch.
Then (Art. 166) $45=\frac{8}{7} p+4+1$, or $\frac{8}{7} p=40$ whence $p=35$.
Also (Art. 169) $l=\frac{144 c v}{n a}=\frac{144 \times 5 \times 608}{288 \times 16}=9 \frac{1}{2} \mathrm{ft}$.
Then $a=288, l=9 \frac{1}{2}, n=16$, and $p=35$.
Hence Formula I, Art. 16 $, \mathrm{H}, \mathrm{P} .=\begin{aligned} & p a \ln \\ & 33000\end{aligned}=\frac{35 \times 283 \times 9 \frac{1}{2} \times 16}{33000}=46.429$, Aus.

EXERCISE.

203. What is the effective horse power of a high pressure enginc in which the piston has an area of 360 inches and makes 20 strokes per minute,-the boiler evaporating $\frac{3}{4}$ of a cubic foot of water per minute under a pressure of 40 lbs. to the square inch? Ans. H. P. $=46.528$
204. The piston of a low pressure steam engine has an area of 432 inches, and makes strokes 10 feet in length. Now, if the boiler evaporates 9 of a cubic foot of water per minute under a pressure of 25 lbs . to the square inch, what is the useful I. P. of the engine?

Ans. H. P. $=71 \cdot 613$.
205. In a high pressure engine the area of the piston is 600 inches, the length of stroke is 6 feet, the effective evaporation of the boiler is $\frac{3}{8}$ of a cubic foot per minute, and the pressure of the steam in the cylinder 80 lbs . to the square inch. Required the H. P. Ans. H. P. $=32 \cdot 897$.

CHAPTER V.

IIYDROSTATICS.

171. Fluidity consists in the transmission of pressure in all directions, or, a fluid may be defined to be a body whose particles are so free to move among one another that they yield to any pressure, however small, that may be applied to them.
172. The term fluid is commonly applied to bodies in both the liquid and gascous state.
173. Fluids are divided into two classes:

1st. Elastic fluids, of which atmospheric air is the type.
2nd. Non-elastic fluids, of which water is the representative.

Note.- Water was formerly thought to be absolutely incompressible, but recent experiments show that water is diminished iu volume गुक कणा of its bulk for each atmosphere of pressure upon it; or in other words a pressure of 2000 atmospheres or 30000 lbs to the square inch would compress 11 cubic feet into 10 cubic fect. Alcohol is about twico as compressible as water.
174. Liquids, by which term we mean non-clastic fluids, differ from gases principally in having less clasticity and compressibility.
175. Liquids differ from solids chiefly in the fact that their particles are less under the influence of the attraction of cohesion, and therefore have a freer motion among themselves, in consequence of which each atom is drawn separately towards the earth by the foree of gravity; lence:-
I. A liquid, confined in any vessel, presses equally in all direc-tions-upwards, downwards, and laterally.
II. The surface of a liquid in a state of rest is always level.

1II. A liquid rises to the same height in all the tubes connected with a common reservoir, whatcver may be their form or capacity.

[^6]depth. Ipon letting go the string the plate is still held against the eylinder by the upward pressure of the water; it will even sustain any weight, which. together with the plate itscli, is not greater than the weight of the water that would enter the cylinder if the plate were removed.
176. When two liquids of different densities are placed in the opposite branches of an inverted syphon or bent tube-their heights in the two legs above the point of contact will be inversely as their densities.

Note.-This may easily be proved by placing mercury and water in a bent graduated glass tube, when it will be found that the column of water will be $13 \frac{1}{2}$ times as high as the column of mercury since the latter is about $13 \frac{1}{2}$ times as heary as the former.
177. The amount of downward pressure exerted by a liquid in any ressel is equal to that of a column of the same liquid, whose base is equal to the area of the bottom of the ressel, and whose height is equal to the depth of the liquid, whaterer may be the form or capacity of the ressel.

Note 1.-To illustrate this fact we procure three vessels, having bottoms of the same area, and sides, in the first perpendicular, in the second converging towards the top, and in the third diverging towards the top. The bottoms are hinged and are held in their places by a cord passing over a pulley and terminating iu a scale pan in which are placed weights to a certain amount. Fater is then carefully poured into the vessel having tho perpendicular sides until its downward pressure is just sufficient to force out the bottom when its depth is accarately measured. Upon using either of the other vessels it is found that the bottom remains fixed until the water reaches this deptly and is then forced open. This arises from the fact that when the sides are perpendicular the bottom supports the whole weight of the water: when the vessel is wider at top than at bottom a portion of the downward pressure is sustained by the sides, while, when the vessel is wider at the bottom than at top, the partičles ncar the bottom are pressed upon by the whole column of liquid above them and their downward and lateral pressure is the same as it would be were the column of liquid of the same dimensions throughout as the base of the vessel.

Note 2,-Care should be taken not to confound weight with pressure, inasmuch as the weight is in proportion to the quantity of liquid, but the pressure is in proportion to the extent ot base and the perpendicular height of the liquid. For example, the weight of the water contained in a conical ressel is found by multiplying the area of the base by one-third of the perpendicular height; but the pressure, by multiplying the area of the base by the whole height. It follows that in a conical vessel the downward pressnre is equal to three times the weight of the liquid. Heuce in a vessel with perpendicular sides, the pressure equals the weight; if the sides diverge upwards, the pressure is less than the weight; and if the sides converge upwards, the pressure is greater than the weight.
178. A cubic inch of water of the temperature of 60° Fahr. weighs 0.03616 lbs . Avoir., a cubic foot at the same temperature weighs 1000 ounces or $62 \cdot 5 \mathrm{lbs}$., and a gallon, 10 lbs.
179. The pressure of a liquid on a vertical or inclined surface is equal to the weight of a column of the same liquid whose base is equal to the area of the surface pressed, and height equal to the depth of the centre of gravity of the pressing liquid beneath its level surface.

Or, more simply, the lateral pressure exerted by any liquid on the side of a vessel is found in lbs. by mulliplying the area of the surface pressed by half the depth of the liquid, and this product by the weight in lbs. of one cubic foot of that liquid.

Note.-It follows that in a cubical vessel filled with any liquid the pressure on the side is equal to half the weight of the liquid, and hence the whole pressure exerted by the liquid, dowaward and laterally, is equal to three times the weight of the liquid.
application of the princlifles contained in alits. 1ifo-179.
Example 206. - What downward pressure is exerted on the bottom of an upright cylindrical ressel having a diameter of 20 feet-the water filling it to the depth of 12 feet?

SOLUTLON.

IIere, sinee the sides are perpendicular, the downward pressure $=$ the weight.

Area of the bottom $=102 \times 3.1416=100 \times 3.1416=314.16$ feet.
Cubic feet of water $=314.16 \times 12=3.69 .92$.
\therefore Weight $=3769.92 \times 62.5=235020 \mathrm{lbs}=$ pressure. Ans.
Example 20t.-If olive oil and milk be placed in the two legs of a bent tube or inverted syphon, when the height of the column of milk above the point of junction is 20 inches, what will be the height of the column of oil?

SOLUTION.

\bar{F} rom the table of specilic gravities Art. 193 , the weight of milk is to that of olive vil as $1030: 915$.

IIence(Art. 176) $91 \bar{u}: 1030:: 20 \frac{103 n \times 20}{915}=22 \xi$ inches. Ans.
Example 208.-If mercury and ether are placed in a bent tube, as in the last example, what will be the height of the colnmn of mercury when that of the ether is 100 inches bigh?

SOLUTION.

From the table of specific gravities the weight of mercury is to that of ether as 1359i: : $\overline{1} 5$.

Hence (Art. 176) $13596: 715:: 100: \frac{715 \times 100}{13506}=5 \frac{1}{4}$ inches. Aus.
Exasule 200.- What will be the lateral pressure exerted agaiust the side of a cistern,-the side being 20 feet long and the water 12 feet deep?

SOLUTION.
Area of the surface pressed $=20 \times 12=240$ fect.
Then (Art. Tis) lateral pressure $=$ area multiplied by balf the depth \times $62.5-240 \times 6 \times 62.5=90000 \mathrm{lbs}$. Ans.

Example 210.-What is the amount of the pressure exerted against one side of an upright gate of a canal, the gate being 27 feet wide and the water rising on the gate to the height of 8 feet?

SOLUTION.
Area of the gate $=2 \overline{7} \times 8=216$ feet, and balf the depth of the water $=4 \mathrm{ft}$. Then (Art. 179) pressure $=216 \times 4 \times 625=54000 \mathrm{lbs}$. Ans.
Example 211.-What is the amount of pressure exerted against a mill-dam whose length is 220 feet, the part submerged being 9 feet wide, and the water being 7 feet deep?
sOLETION.
A rea of part submerged $=220 \times 9=1980$ fect, and half the depth of water $=3.5$ feet.
Then (Art. 179) pressure $=1980 \times 3.5 \times 625=433125 \mathrm{lbs}$. Ans.
Example 212.-If the body of a fish have a surface of 5 square feet, what will be the aggregate pressure it sustains at the depth of 100 feet?
solution.
In this and similar examples the body of the fish has to sustain a pressure equal to the weight of a column of the water having a base equal in area to the aurface of the fish and a height equal to the depth of the fish beneath the surface of the water.

Then rolume of water sustained by the body of the fish $=5 \times 100=500$ cubic feet.

Hence pressure $=500 \times 62.5=31250 \mathrm{lbs}$. Ans.*
Example 213.-If a man whose body has a surface of 15 square fect dives in water to the depth of 70 feet, what pressure does his body sustain?

SOLUTION.

Column of water sustained by man's body at depth of 70 feet $=15 \times 70$ $=1050$ cubic feet.
Hence pressure $=1050 \times 62.5=65625 \mathrm{lbs}$, Ans.
Example 214.-To what denth may an empty closed glass vessel just capable of sustaining a pressure 170 lbs . to the square inch be sunk in water before it breaks?

BOLUTION.
From Art. 178 we find that a cubic inch of water at the common tempe. rature of 60° Fahr. weighs 0.03616 of a pound Avoirdupois.

Hence the vessel may be sunk as many inches as . 03616 lbs . is contained times in 150 lbs .
That is depth $=170 \div 0.03616=4,01 \frac{1}{3}$ inches $=391$ feet $9 \frac{1}{3}$ inches. Ans.

[^7]Example 215. -If an empty corked bottle be sunk to the depth of 130 feet before the cork is driven in, -what pressure to the square inch was the cork capable of sustaining before entering the bottle?

SOLUTION.

Column of water sustained by each square inch of the cork $=130 \times 12$ $=1500$ cubic inches.
rhen weight sustained by each square inch of the cork $=1560 \times 0.03616$ $=56.4 \mathrm{lbs}$ Aus.

EXERCISE.

216. What is the amount of pressure exerted against one side of the upright gate of a canal, -the gate being 24 feet wide and submerged to the depth of 10 feet?

Ans. 75000 lhs.
217. What is the amount of pressure exerted against a milldam, 一the part submerged being 10 feet wide and 80 fect long and the depth of the water being 8 feet? Ans. 200000 lbs.
218. What is the pressure sustained by the sides of a cubical water tight box placed in water at the depth of 120 feet beneath the surface,--each edge of the box being 5 feet long? Ans. 1125000 lbs .
219. At what depth beneath the surface will a closed giass vessel, capable of sustaining a pressure of 79 lbs . to the square inch, break? Ans. $182 \mathrm{ft} .0 \frac{3}{4}$ inch.
220. What pressure is sustained by the body of a man at the depth of 30 feet,-assuming that his body has a surface of $1 \frac{1}{2}$ square yards? Ans. $25312 \frac{1}{2} \mathrm{lbs}$.
221. Th hat is the amount of pressure exerted against one side of the upright gate of a canal, -the gate being 30 feet wide and submerged to the depth of 5 feet?

Ans. $23437 \frac{1}{2}$ lbs.
222. In a glass tube bent in the form of a syphon a column of turpentine is balanced by means of a column of sea water,-if the beight of the former be 20,30 , or 47 inches mhat in each case will be the height of the latter?

Ans. $166_{16}^{9}, 25_{5}^{\circ}$ or 398 inches.
223. That is the downvard pressure, the pressure on each side and also the pressure on each end of a rectangular cistern, -14 feet long, and 9 feet wide-the water heing 10 feet deep? Ans. Downward pressure $=78750 \mathrm{lbs}$.

Pressure on side $=43750 \mathrm{lbs}$. Pressure on end $=28125$ lbs.
224. What amount of pressure is sustained by the body of a Whale the depth of 260 feet, upon the supposition that his body presents a surface of 200 square yards?

Ans. 29250000 lbs .
225. In a glass tube bent in the form of a syphon a column of mercurs is balanced in succession by a column of alcohol and a column of sulphuric acid. If the beight of the former be 10 inches, what in each case will be the height of the latter?

> Ans. Alcohol $=1713$ inches. Sulphuric acid $=73_{5}^{4}$ incbes.
180. To find the pressure exerted against a vertical or inclined surface at some given depth beneath the surface of the water:

RULE.

Add the depth of the upper part of the surface to that of the loveer part, and divide the sum by 2 . The result is the mean height of the columns of water pressing on that surface.

Then multiply the area of the surface by the mean height of the water pressing it, and the result by the weight in lbs., of one cubic foot of water.

Example 226. What amount of pressure is sustained by one square yard of the side of a canal, the upper edge being 10 feet and the lower edge 12 feet beneath the surface of the water?
SOLUTION.

Mean weight of column of water pressing the given surface $=\frac{10+12}{2}=$ 11 feet, and area of surface $=9$ square feet.
Then pressure $=9 \times 11=99 \times 62.5=6187 \frac{1}{2}$ lbs. Ans.
Example. 227.-An upright flood gate is so placed in a canal, that the water is just level with the top of the gate.-Assuming the gate to be 30 feet long and 20 feet wide, what pressure is sustained by the lower half of one side?

SOLUTION.

The upper edge of the half to which the problem refers is 10 feet beneath the surtace, and the lower edge 20 feet, therefore the mean height of the column of water pressing against it is $\frac{10+20}{2}=15$ feet.
Also area of part of gate given $=30 \times 10=300$ square fcet.
Hence pressure $=300 \times 15 \times 62.5=281250 \mathrm{lbs}$. Ans.
181. In problems similar to the last a better rule to use may be derived from the following consideration:
The pressure on the whole gate is to the pressure on any fraction of it measured from the top, in the duplicate ratio of 1 to that fraction.
Hence to find the pressure on auy part of the gate we have the following :

RULE.

Frrst.-If the part of the gate be measured from the top downwards.

Fïnd the pressure on the whole gate by Art. 179, and multiply it by the square of the given fraction.

Second.-If the part of the gate bo measured from the bottom upwards.

Take the given fraction from 1, square the remainaer, and subtract it from unity.

Multiply the pressure on the whole gate by the fraction thus obtained, and the result will be the pressure on the given fraction.

Examples 228. The flood-gate of a canal is 16 feet wide and 12 feet deep, and is placed vertically in the canal, the water being on one side only and just level with the upper edge of the gate; Required the pressure- $1^{s t}$. On tho whole gate.
$2^{\text {nd }}$. On the upper third of the gate.
$3^{\text {rd }}$. On the lower half of the gate.
$4^{\text {th }}$. On the upper two-fifths of the gate.
$5^{\text {th }}$. On the lower two-elevenths of the gate.

SOLUTION.

I. Pressure on the whole gate $=16 \times 12 \times 6 \times 62 \cdot 5=7200018 \mathrm{~s}$.
11. Pressure on upper third $=$ whole pressuro $\times\left(\frac{1}{3}\right)^{2}=72000 \times \frac{1}{y}=$ 3000 lbs.
III. Pressure on lower half $=$ whole pressure $\times\left\{\begin{array}{l}1-\left(\frac{1}{2}\right)^{2} \\ 4000 \text { lbs. }\end{array}={ }^{7} 2000 \times 1=\right.$ IV. Pressure on upper tro-fifths $=$ whole pressure $\times\left(\frac{2}{5}\right)^{2}=72000 \times \frac{4}{25}$ $=11520 \mathrm{lbs}$.

In III we take the given fractlon $\frac{1}{2}$ from unlty, this leaves $\frac{1}{2}$ which we square and again subtract from unity and thus obtain ${ }_{4}^{3}$ for the multiplier.
In V we take tho given fraction 1^{2} from unity, this gives us 7^{9} which we square and again snbtract from unity thus obtaining ${ }^{ \pm} 2^{4} \mathrm{f}$ for the multiplier.
Example 229.-If a flood-gate be placed as in last example what pressure will be exerted on the upper $\frac{3}{7}$, and what on the lower $\frac{2}{5}$ of the gate if it be 10 feet wide and 12 feet deep?

80LUTION.

We first find the pressure on the whole gate by Art. 179.
Then for the upper $\frac{3}{7}$ wo multiply tho wholo pressure by the square of 3 .
For the lower ? $\frac{8}{6}$ we subtract $\frac{7}{5}$ from 1 , this gires us $\frac{3}{8}$ which wo square and thus obtain $\frac{9}{2}$, then wo subtract $\frac{9}{25}$ from 1 and thus obtain $\frac{1}{2} \frac{6}{6}$, lastly wo multiply the whole pressure by this $\frac{1}{2} \frac{1}{5}$.
Whole pressure $=10 \times 12 \times 6 \times 62.5=45000 \mathrm{lbs}$,
Pressure on upper $\eta=45000 \times \frac{9}{19}=\$ 265 \frac{1}{3} 1 \mathrm{lbs}$.
Pressure on lower $\frac{2}{6}=45000 \times \frac{1}{2} \frac{10}{6}=25800 \mathrm{lbs}$.

EXERCISE.

230. The flood-gate of a canal is 30 feet wide and 10 feet deep, and is placed vertically in the canal, the water being on one side only and level with the top, required the pressure-lst.

On the whole gate, 2 nd. On the upper half of the gate; 3rd. On the lower half of the gate; 4th. On the lowest twosevenths of the gate.

Ans. Pressure on whole gate	$=93750$	lbs.	
"	upper half	$\equiv 23437 \frac{1}{2}$	$"$
$"$	lower half	$=70312 \frac{1}{2}$	
$"$	lowest two-sevenths	$=45918 \frac{18}{49} "$	

231. A hollow globe has a surface of 7 square feet, and is sunk in water to the depth of 150 feet. Required the total pressure it then sustains.

Ans. 65625 lbs.
232. What pressure is exerted against one square yard of an embankment if the upper edge of the square yard be 11 ft . and the lower edge 13 feet beneath the surface of the water? Ans. 6750.
233. A hollow glass globe is sunk in water to the depth of 400 feet, at which point it breaks. Required the extreme pressure to the square inch which the vessel was capable of sustaining.

Ans. $173 \cdot 568 \mathrm{lbs}$.
234. Required the pressure sustained by the body of a man at a depth of 100 yards beneath the surface of water-assuming the man's body to have a surface of 15 square feet.

Ans. 281250 lbs.
235. A flood-gate 16 feet long is submerged to the depth of 9 feet in water ; what pressure is exerted against each side of it?

Ans. 40500 lbs.
236. A mill-dam is 120 feet long and 11 wide, the water being exactly level with the top of the dam and the lower edge of the dam 7 feet beneath the surface. 1st. What will be the pressure exerted against the whole dam. 2nd. What pressure will be exerted against the upper part of the dam. 3rd. What pressure will be exerted against the lower half of the dam? Ans. Against whole dam 288750 lbs.
" upper half $72187 \frac{1}{2} \mathrm{lbs}$.
" lower half $216562 \frac{1}{2}$ lbs.
237. A flood-gate 26 feet wide is submerged perpendiculary to the depth of 12 feet ; find 1st. The pressure against one side of the whole part submerged. 2 nd. The pressure against the lower half. 3rd. The pressure against the lowest third. 4th. The pressure against the lowest sixth.

Ans. 117000 lbs. whole gate. 87750 lbs. lower half. 65000 lbs . lowest third. 35750 lbs. lowest sixth.
182. If water be confined in a vessel and a pressure to any amount be exerted upon any one square inch of the surface of that water, a pressure to an equal amount will be transmitted to every square ineh of the interior surface of the vessel in which the water is confined.

Fig. 16.

Note.-In the accompanying figure suppose tho piston P lias an area of 1 square inch, and tho piston y^{\prime} an area of 100 square incles, then if 1 lb . preszuro be applled to P \& weight of 100 lbs. must be applied to p^{\prime} in order to malutain equilibrium. It is this property of equal and instant transmission of pressure whicle enables us to make use of liydrostatic pressure as a meclianlcal power, aud it is upon this principlo that Bramah's II_{5} drostatic Press is constructed.

183. Bramah's Hydrostatic Press consists of two strong metalic cylinders A and a, one many times as large as the other, connected together by a tubc.

Fig. 17.
The small cylinder is supplied with a strong forcing pump s^{\prime}, and the larger one with a tightly fitting piston S, attached to a firm platform or strong head P. Both the y ylinders and the communicating tube contain water, and when
 downward pressure is applied to the water in the smaller cylinder, by means of the attached forcing pump, the piston in the larger is foreed upward by a pressure as much greyt. than the downavard pressure in the smaller, as the sectio area of the larger cylinder is greater than that of the sti

For example, if the smaller cylinder have an area of half a square inch, and the largo cylinder an arca of 500 square inches, then tho upward pressure in the latter will be 1000 times as great as the downward pressure in the former.
184. Bramah's Hydrostatic Press is used for pressing paper, cotton, cloth, gunpowder. and other things-also for testing the strength of rop for forooting trees, and for other purposes.
185. To find the relation between the foree applied and the pressure obtained in Bramah's Hydrostatic Press.
nele.
I. Is the power be applied by means of a lever, find the amount of downward pressure in the smaller cylinder by the rule in Art. 77.
11. Divide the sectional area of the larger cylinder by that of the smaller cylinder, and multiply the quotient by the power applued to the smaller cylinder.
Example 238. -In a hydrostatic press the force pump has a sectional area of one square inch ; the large cylinder a sectional area of one square foot, the force pump is worked by means of a lever whose arms are to one another as 21:2. If a power of 20 lbs . be applied to the extremity of the lever what will be the upward !pressure cxerted against the piston in the large cylinder?

SOLETION.

Power applied to a force pump $=\frac{20 \times 21}{2}=21 \mathrm{lbs}$.
Sectional area of smaller cylinder $=1$ inch, and of a larger cylinder $=$ 144 inchos.
Then $144 \div 1=144 \times 210=30240 \mathrm{lbs}$. Ans.
Example 239. - In a bydrostatic press the sectional areas of the cylinders are $\frac{1}{3}$ of an inch and 150 inches, and the pormer lerer is so divided that its arms are to one another as 7 to 43. What pressure will be exerted by a power of 100 lbs . applied at the extremity of the long arm of the lever?

solution.

Dowuward pressure in small cylinder $=\frac{100 \times 43}{\overline{7}}=014 \frac{2}{2} \mathrm{lbs}$.
Cpward pressure in largeceylinder $=\frac{150}{\frac{1}{3}} \times 614 \frac{9}{7}=450 \times 614 \frac{9}{7}=260428 \frac{1}{7}$
163. Ans.
Example 240.-The area of the small piston of a hydrostatic press is $\frac{1}{2}$ an inch and that of the larger one 300 inches, the lever is 30 inches long and the piston rod is placed 5 inches from the fulcrum (so as to form a lever of the second order) what power must be applied to the end of the lever in order to produce an upward pressure in the cslinder of 1000000 lbs . ?

SOLUTION.
Downward pressure in smaller cylinder $=10000000 \mathrm{lbs} \div \frac{300}{\frac{1}{2}}=1000000$
Ibs. $\div 600=1666 \frac{3}{3}$ lbs.
Then power applied $=1666 \frac{2}{3} \mathrm{lbs} . \div \frac{30}{5}=1666 \frac{2}{3} \div 6=277 \% \mathrm{lbs}$. Ans.

EXERCISE.

241. In a hydrostatic press the area of the small cylinder is one inch, and that of the large one 300 inches, the force pump is worked by a lever of the second order 30 inches long, having the piston rod 2 inches from the fulcrum; if a pressure of 50 lbs . be applied to the lever, what upward pressure will be produced in the large eylinder? Ans. 225000 lbs .
242. In a lydrostatic press the force pump has a sectional area of half an inch, the large cylinder a sectional area of 200 inches; the force pump is worked by means of a lever whose arms are to one another as 1 to 50 ; now suppose a force of 50 lbs . be applied to the extremity of the lever, what will be the upward pressure exerted against the piston in the large cylinder?

Ans. 1000000 .
243. In a hydrostatic press the small cylinder bas an aren of one inch, and the large one an area of 500 juches, the pump lever is so divided that its arms are to one another as 1 to 25 . What will be the upward pressure against the piston in the large cylinder produced by a force of 100 lbs. acting at the extremity of the lever?

$$
\text { Ans. } 1250000 .
$$

244. The area of the small piston of a hydrostatic press is ${ }^{3}$ of an inch, and that of the large one 120 inches-the arms of the lever by which the force pump is worked are to one another as 40 to 3. Required the upward pressure exerted against the piston of the large cylinder by a power of 17 lbs a applied at the extremity of the lever?

Ans. 36266_{3}^{2} lbs.
245. The arca of the small piston of a hydrostatic press is $1 \frac{1}{1}$ inch, and that of the large one 200 inches-the arms of the lever by which the force pump is worked are to one another as 20 to $1 \frac{1}{2}$. What power applied at the extremity of the lever will produce a pressure of 750000 lbs ? Ans. $421_{8}^{7} \mathrm{lbs}$.
186. Since the pressure of water upon a given base depends upon the height of the liquid and not upon its quantity, it follows that:-

Any quantity of water, however small, may be made to balance the pressure of any other quantity however great, or to raise any weight however large.

Note.-This is what is commonly called the Hydrostatic Paradox. In reality, howerer, there is nothing atall paradoxicalinit; since, although a pound of water may be made to balance 10 lbs., or 1000 lbs ., or $100,000 \mathrm{lbs}$., it does it upon precisely the same principle that the power balances the weight in the lever and other mechanical powers. Thus in order to raise 20 lbs . ot water by the descending force of 1 lb ., the latter must descend 20 inches in order to raise the former 1 inch. Henco what is called the bydrostatic paradox is in strict conformity to the principle of virtual velocities.
187. This principle is illustrated by an instrument called the Hydrostatic Bellows, which consists of a pair of boards united together by leather, as in the common bellows, and made water-tight. From the upper board there rises a long tube B, finished with a funnel-shaped termination, C.

Note. When water is poured into the tube an upward pressure is exerted against the upper board as much greater than the weight of the water in the tube as the area of the board is greater than the sectional area of the tube.

For example, if the sectional area of the tube be $\frac{1}{7}$ of an inch, and the area of the board be 250 in ., then the area of the board will be 1000 times as great as that of the tube, and consequently 1 lb . of water in the tube will exert a pressure of 1000 lbs . against the upper board of the bellows.

Fig. 18.

188. To find the upward pressure exerted against the board of a hydrostatie bellows by the water contained in the tube.

RULE.

Divide the sectional area of the board by that of the tube, and multiply the result by the weight of the water in the tube.

Note.- The weight of water in the tube is found by multiplying the sectional area of the tube by the height of the water in inches and the product, which is cubic inches of water, by 0.03616 lbs., the weight of one cubic inch of water.

Example 246.-The upper board of a hydrostatic bellows has an area of 1 foot, the tube has a sectional area of $\frac{1}{2}$ an inch and is filled with water to the height of 7 feet. What upward pressure is exerted against the top board of the bellows?

SOLUTION.
Cubie inches of water in the tube $=t \times 84=42$.
Weight of water in tube $=0.03616 \times 42=1.51572$.
Upward pressure against bellows board $=1.51872 \times \frac{144}{\frac{1}{2}}=1.51872 \times 258$
$=437.39 \mathrm{lbs}$ Ans.
Example 247.-In a hydrostatic bellows the board has an area of 200 inches and the tube a sectional area of $\frac{1}{4}$ of an inch. That upward pressure is exerted on the board by 5 lbs. of water in the tube.

> SOLUTION.

Upward pressure $=7 \times \frac{200}{\frac{1}{4}}=7 \times 800=5600 \mathrm{lbs}$. Ans.

EXERCISE.

248. In a hydrostatic bellows the board has an area of 250 inches, the tube has a sectional area of 1$\}$ inch, and contains 11 lbs . of water. What is the amount of upward pressure exerted against the board of the bellows?

Ans. 2200 lbs.
249. The board of a hydrostatic bellows has an area of 300 inches, the tube has a sectional area of 1 inch, and is filled with water to the height of 10 feet-what pressure will be exerted against the upper board of 'the beilows? Ans. $1301 \cdot 76 \mathrm{lbs}$.
250. The tube of a hydrostatic bellows has a sectional area of - 72 of an inch, and is filled with water to the height of 50 feet-what weight will be sustained on the bellows' board if the latter lhave an area of 3 feet?

Ans. $9372 \cdot 6 \mathrm{~h} 2 \mathrm{lbs}$.
189. A body immersed in any liquid will either float, sink, or rest in equilibrium, according as it is specifically lighter, heavier, or the same as the liquid.
190. A floating body displaces a quantity of liquid equal to its own weight.
191. A body immersed in any liquid loses a portion of its weight equal to the weight of the liquid displaced, and, hence by weighing a body first in air and then in water, its relative aceight or specifc grarity may be determined.
192. The specific gravity of a body is its weight as compared with the weight of an equal bulk or volume of some other body assumed as a standard.
193. Pure distilled water at the temperature of 60° Fahr. is taken as the standard with which to compare all
solids and liquids, and 1 ure dry atmospheric air at a temperature of 32° Fahr., and a barometric pressure of 30 inches is taken as the standard with which all gases are compared.
194. To find the specific gravity of a solid heavier than water :-

RCLE.

Divide the weight of the body in air by its loss of weight in water, the result will be its specific gravity.

Example 251.-A piece of lead weighs 225 grains in air, and only 205 grains in water; required its specific gravity.

solution.

Loss of weight $=225-20 \dot{\sigma}^{\circ}=20$ grains.
Hence specific gravity $=225 \div 20=11 \cdot 250$. Ans.
Example 252.-A piece of sulphur weighs 97 grains in air and but 50.5 grains in water; what is its specific gravity?
solution.
Loss of weight in water $=97-50.5=46.5$ grains.
Then specitic gravity $=97 \div 46^{\circ}=\cdot 008$. Ans.

exerclise.

253. A piece of silver weighs 200 grains in air and only 180 grains in water; required its specific gravity.

Ans. 10.000. 254. A piece of platinam weighs $154 \frac{1}{2} \mathrm{oz}$. in air and only $147 \frac{1}{2}$ oz. in water; required its specific gravity. Ans. 22.0 h1. 255. A piece of glass weighs 193 oz . in air and but 130 oz . in water; required its specific gravity.

Ans. 3.063.
195. To find the specific gravity of a solid not suffciently leavy to sink in water.

RCLE.

To the body whose specific gravity is sought attach some other body sufficiently heavy to sink it, and of which the weight in air and loss of weight in water are krown.

Then weigh the united mass in water and in air, from its loss of weight deduct the loss of weight of the heavier body in water, and divide the absolute weight of the lighter body by the remainder, the quotient will be the specific gravity of the lighter body.

Exayple 256.-A piece of wood which weighs 55 oz . in air has attached to it a piece of lead which weighs 45 oz . in air and 41 in water, the united mass weighs 30 oz . in water; required the specific gravity of the piece of wood.

SOLUTION.

Wt. of united mass in air $=5 j+45=100 \mathrm{oz}$.
Loss of wt. of united mass in water $=70 "$
Loss of wt. of lead in water $=$
Then $55 \div 66=833$ Remainder $=\quad 6=1085$ of weight of the wood.
Example 257.-A piece of wood which weighs 70 oz . in air has attached to it a piece of copper which weighs 36 oz . in air and 31.5 oz . in water, the united mass weighs only 11.7 oz . in water; what is the specific gravity of the wood?

sOLUTION.

W't. of united mass in air $=70+36=106 \mathrm{oz}$ water $=$
Loss of wt. of unitod mass in water $=94.3$ "
Loss of wt. of copper " $\quad=4.5 "$
Loss of wt. of wood " $=89.8$ " $=10 s 8$ of weight of the wood.
Then specific gravity of wood $=\overline{70} \div 89.8 \equiv \overline{71} 9$. Ans.

EXERCISE.

258. A piece of pine wood which weighs 15 lbs . in air has attached to it a piece of copper which weighs 18 lbs . in air and 16 lbs . in water; the weight of the united mass in water is 6 lbs . ; required the specific gravity of the pine?

Ans. 600.
259. A piece of cork which weighs 20 oz . in air has attached to it an iron sinker which weighs 18 oz , in air and 15 is oz . in water, the united mass weighs 1 oz . in water; required the specific gravity of the cork? Ans. ${ }^{5} 575$.
260. A piece of wood which weighs 33 oz . in air has attached to it a metal sinker which weighs 21 oz . in air and 18.19 oz . in water, the united mass weighs 2.5 oz . in water ; what is the specific gravity of the wood? Ans. $\cdot 677$.
196. The specific gravities of liquids may be determined in three different ways.

First Metiod.-A small glass flask, which holds precisely 1000 grains of pure distilled water at the temperature of 60° Fahr., is filled with the liquid in question and accurately weighed, the result indicates the specific gravity of the liquid.

Second Mexhod. - A piece of substance of known specific gravity is weighed both in and out of the liquid in question. The difference of weight is multiplied by the specific gravity of the solid,
and the product divided by the absolute weight of the solid, and the result is the specific gravity of the liauid.

$$
\begin{aligned}
& \text { That is } s=\frac{v-w^{\prime}}{w} \times s \text {; } \\
& \text { where } w=\text { absolute weight of solid. } \\
& w^{\prime}=\text { weight in the liquid. } \\
& \text { Therefore } w-w^{\prime}=\text { loss of weight. } \\
& s=\text { specific gravity of the tiquid. } \\
& s^{\prime}=\text { specific gravity of the solid. }
\end{aligned}
$$

Third Method.-This specific gravity of liquids is most commonly found in practice by means of an instru- Fig. 19. ment called the Hydrometer, which consists of a graduated scale rising from a glass or silver bulb, beneath which is a small appendage loaded with shot or some other heary substance. It acts upon the principle that the greater the density of a liquid the greater will be its specific gravity. The depth to which the instrument sinks in different liquids is shown by the graduated scule, which thus indicates their specific gravities. For liquids specifically lighter than wouter, the scale is graduated from the bottom upvards; for those heavier, from the top downucurds.

Example 261.-The Thonsand-grain Bottle filled with sulphuric acid weighs 1841 grains.* What is the specific gravity of the sulphuric acid?

$$
\begin{gathered}
\text { solution. } \\
1 S 41 \div 1000=1.841 . \text { Ans. }
\end{gathered}
$$

Example 262.-The Thousand-grain Bottle filled with alcohol weighs 792 grains, required the specific gravity of alcohol.
soldtion.

$$
792 \div 1000=-92 . \text { Ans. }
$$

Example 263.-A piece of zinc (specific gravity $\boldsymbol{7} \cdot 190$) weighs 27.4 oz . in a certain liqnid and $32 \cdot 7 \mathrm{oz}$. out of it , required the specific gravity of the liquid.

SOLUTION.
Нere $10=32 \cdot \bar{\pi}, w^{\prime}=2 \cdot \cdot 4, s^{\prime}=\tau \cdot 190$.
Then $s=\frac{v-w^{\prime}}{w} \times s^{\prime}=\frac{32 \cdot \overline{7}-2 \bar{T} \cdot 4}{32 \cdot 7} \times 7 \cdot 190=\frac{5 \cdot 3 \times 7 \cdot 190}{32 \cdot \%}=1 \cdot 165$. Ans
Example 264.-A piece of silver (specific gravity 10.500) reighs 47.8 grains in a liquid and 58.2 grains out of it-whal is the specific gravity of the liquid?

[^8]
SOLUTIUN:

Here $w=55.2, w^{\prime}=4.8$ and $s^{\prime}=10.5$.
Then $s=\frac{20-v v^{\prime}}{20} \times s^{\prime}=\frac{6 s .2-47.8}{65.2} \times 10.5=\frac{10.4 \times 10.5}{58.2}=1.876$. Ans

EXERCISE.

265. A piece of copper (specific gravity $8 \cdot 850$) weighs $446 \cdot 3$ grains in liquid, and 400 grains out of̂ it, required the specific gravity of the liquid.

Ans. •789.
266. The Thousand-grain Bottle filled with olive oil weighs 915 grains-what is the specific gravity of olive oil?

Ans. 915.
267. The Thousand-grain Bottle filled with mercury weighs 13596 grains-what is the specific gravity of mercury?

Ans. 13:596.
268. A piece of cast-iron (specific gravity 7.425) weighs $34 \cdot 61$ oz . in a liquid, and 40 oz . out of it,-what is the specific gravity of the liquid? Ans. 1.000 nearly.
269. A piece of gold (specific gravity 19.360) weighs 139.85 grains in a liquid, and 159.7 grains in the air, required the specific gravity of the liquid? Ans. $2 \cdot 406$.
270. A piece of marble (specific gravity $2 \cdot 850$) weiglss 30 lbs . in a certain liquid, and 35.9 lbs . in the air, required the specific gravity of the liquid? Ans. 468 .
197. The specife gravity of gases is found by exhausting a flask of atmospheric air and filling it with the gras in question previously well dried. This is accurately weighed and its weighte 3 mpared with the weight of the same volume of dry atmospheric air at the temperature of 60° Fulır. and under a barometric pressure of 30 inches.
198. The following table gives the specific gravitice of the most coummon substances:

table of specific gravities.

GASES.		Coppe	$8 \cdot 850$
Atmospheric air,......	1.000	Brass,.	$8 \cdot 300$
Ifydrogen,	-069	Iron,	$7 \cdot 788$
Oxygen	$1 \cdot 106$	Tin,	$7 \cdot 293$
Vitrogen	. 972	Zinc,	7-190
Ammoniacal gas,	-596	Diamond	$3 \cdot 530$
Carbonic acid gas	1.529	Flint glas	$3 \cdot 330$
Sulphurous acid gas,	$2 \cdot 234$	Sulphur	2.086
Chlorine,	$2 \cdot 470$	Slate,	$2 \cdot 840$
Liquids.		Brick,	$2 \cdot 000$
Distilled water,	1.000	Commo	$2 \cdot 460$
Me	$13 \cdot 596$	Marble,	$2 \cdot 850$
Sulphu	$1 \cdot 8.41$	Ivory	1.825
Nitric acid,	1.220	Phosphorus	1.770
Milk,	1.030	Lignum vita	$1 \cdot 350$
Sea Wate	1.026	Boxwood	$1 \cdot 320$
Wine,	-993	Potassiun	875
Olive	-915	Sodium,	-972
Spirits of turp	-869	Pumice ston	-914
Pure alcohol,	-792	Dry pine,	-657
Etber,	-715	Dry poplar	-383
Prussic acid,	-696	Ice,	-865
SOLIDS.		Living ma	-891
Platinum	$22 \cdot 050$	Cork,	-240
Gold,	$19 \cdot 360$	Graphite,	2.500
Silver,	$10 \cdot 500$	Bituminous coal,	1.250
Lead,	11.250	Anthracite coal,	1-800

199. A cubic foot of pure distilled water at the temperature of 60° Fabr. weighs exactly 1000 ounces. Hence if the specific gravity of any substance be known, the weight of a cubic foot, \&ec., may be easily found.
For example.-The specific gravity of mercury is 13.596 water, being 1.000 and a cubic foot of water weighing 1000 ounces, it follows that a cubic foot of mercury weighs 13596 ounces.
200. To find the solid contents of a body from its weight: -

RULE

Contents in feet $=\frac{w}{w^{\prime}}$; where $w=$ whole weight, and $w^{\prime}=$ weight of a cubic foot as ascertained from its specific gravity.

Example 271.-How many cubic feet are there in 2240 lbs . of Ury oak (specific gravity 925.)?

GOLUTION.
Here $\frac{v}{w w^{\prime}}=\frac{2240 \mathrm{lbs}}{925 \mathrm{oz} .}=\frac{35840}{925}=38 \frac{138}{85}$ cubic feet.
Example 272.-How many cubic feet are there in a mass of irou which weighs 17829 lbs ?

SOLUTION.
Speciflo gravity of iron $=7.783$. Therefore 1 cubic foot weighs 7758 oz Then cubic fect in mass $=17829 \mathrm{lbs} . \div 788 \mathrm{oz} .=36 \cdot 628$. Ans.
201. To find the weight of a body from its solid con-tents:-
$w=$ contents in ft. $\times w^{\prime}$.
rule.
Where 10 and w^{\prime} are same as in last rule.
Example 273.-What is the weight of a block cf dry oak 10 ft . long, 3 ft . thick, $2 \frac{1}{\mathrm{ft}} \mathrm{ft}$ wide ?

Here $10 \times 3 \times 2 \frac{1}{2}=75$ cubic feet.
Then $w=w^{\prime} \times 75=925 \mathrm{oz} . \times 75=69375 \mathrm{oz} .=4335 \frac{1}{1} 1 \mathrm{t} 1 \mathrm{~s}$. Ans.
Example 274. -What is the weight of a block of marble 8 ft . long. 2 ft . wide, $1 \frac{1}{2} \mathrm{ft}$. thick.

sOLUTION.

Cubic fect of marbie $=8 \times 2 \times 1 \frac{1}{2}=24$.
Spec. grav. of marble $=2 \cdot 850$. Therefore one cubic foot weighs 2850 0z. Then weight of block $=2850 \times 24=68400 \mathrm{oz} .=4275 \mathrm{lbs}$. Ans.

EXERCISE.

275. What is the weight of a mass of copper which contains 29 cubic feet?

Ans. 16040 lbs .10 oz.
276. How many cubic feet are there in a mass of lead which weighs seven million pounds? Ans. 9955.55 cub . ft.
277. How many cubic feet of sulphuric acid are there in 78124732 lbs.? Ans. $678976^{\circ} 48 \mathrm{cub}$. ft.
278. What is the weight of the mercury contained in a rectangular cistern 6 feet long, 4 feet wide and 10 feet deep the mercury filling it?

Ars. 203940 lbs.
279. If a block of zinc be 11 fect long by 3 feet wide and 2 feet thick, how much does it weigh?

Ans. 29658 lbs.
280. What is the weight of a squared log of dry pine 44 feet long and 18 inches square?

Aus. 4065 lbs .3 oz.
202. In order that a floating body may be in equilibrium it is requisite that :-

1st. The weight of the water displaced shall be equal to the weight of the floating body; and,
2nd. The resultant of all the upward pressures of the liquid shall act in the line of direction of the centre of gravity of the body.
203. The ceatre of buoyancy of a floating body is the point upon which the resultant of all the upward pressures of the liquid acts.
Note. The centre of bnoyancy coincides not with the centre of gravity of the floating body, but with the centre of gravity of the fluid displaced. While the body floats, the centre of buoyancy is always below the centre of gravity, but the two coincide when the body sinks. In a ship, however, or other hollow body, containing much heavy ballast in the hold, the centre of gravity is below the centre of buoyancy.
204. A floating body is in equilibrium when the centre of grarity and the centre of buoyancy are in the same vertical line, and the equilibriam is :-

Stable when the centre of gravity is below the centre of bnoyancy.

Neutral when the centre of gravity coincides with the centre of buoyancy.

Unstable when the centre of gravity is above the centre of buoyancy.

CHAPTER VI.

PNEUMATICS.
205. Pneumatics treats of the mechanical properties of permanently elastic fluids, of which atmospheric air may be taken as the type.
206. The atmosphere (Greek atmoi "gases") or sphere of gases is the name applied to the gaseous envelope which surrounds the earth.
207. It is supposed, from certain astronomical considerations that the atmosphere extends to the height of only about 45 miles above the surface of the earth.
Note. - The height of the atmosphere is only about $\frac{1}{9} \sigma$ of the radius of the earth, so that upon an artificial globe 24 inches in diameter the atmosphere would be represented by a covering to of an inch in thrickness.
208. Atmospheric air is a mechanical mixture chiefly of two gases, oxygen and nitrogen, in the proportion of

1 gallon of the former to 4 gallons of the latter. Its exact composition, omitting the aqueous vapor, is as follows:-

COMPOSITION BY VOLUME.

Note-- Oxyyen is the sustaining principle of animal lifo and of ordinary combustion. When an animal is placed in a vessel of puro oxyfen its heart beats with increased energy and rapidity and it very soon dies from exeess of vital action. Many substanees, also, that are not all combustibio ander ordinary circumstances burn when placed in pure oxygen with extraordinary brilliancy and vigor.
Nitrogen, on tho other hand, supports neither respiration nor combustion. In its chemical nature it is distinguished chietly by its negative properties. In tha atmosplicro it serves the important purpose of diluting tho oxygen and thus fitting it for the function it is desigued to perform in the aninal economy.

Carbonic acid Is a highly poisonous gas, formed by the union of oxygan and carbon (charcoal). It is produced in large quantities daring the processes of animal respiration, common combustion, fermentation, voleanic action and the decay of animal and vegetable substances. Aithough when iuhaled, it rapidly destroys animal life it constitutes tho chief source of food to the plant. Animals takointo the lungs airloader with oxygen and throw it off so charged with carbonic acid as to bo incapable of again berving for the purposes of respiration. Tho green parts of plants, on the coutrary, absorb air, decomposo the carbonic acid it contains, retain tho carbon and give off air coutaining no carbonic acid but a large amout of oxygen. This is a most beantiful illustration of the mutual dependence of the different orders of created beings upon one another. Were it not for plants, tho air would rapidly becomo so vitiated as to cause the total extinction of animal life; were it not for animals, plants would rot thrive for want of the food now supplied in the form or carbonic acid by the liviug animal. A sit is, the one order of beings prepares the air for the sustenance and snpport of the other, and so admirably is tho matter adjusted that the composition of the air is, within very narrow limits, invariably tho same.
The amount of carbonic acid varies from 3.7 as a minimum to 6.2 as a maximum in 10000 volumes.

Carburetted Hydrogen is produced during the decay of animal and vegetable sabstances. It is ono of the chiet ingredients uf common illuminating gas, and is poisonous to animals when present in the air in large (u untities.
209. One of the most remarkable characteristics of gases, is the property they possess of diffusing themselves among one another. Thus if a light gas and a heary one are once mixed they exhibit no tendency to separate again, and no matter how long they may be allowed to stand at rest, they are found upon examination intimately ningled with each other. Moreover if two vessels be placed one upon
the other, the upper being filled with any light gas (hydrogen) and the lower with any heavy gas (carbonic acid), and if the two gases be allowed to communicate with one another by a narrow tube, or a porous membrane, a remarkable interchange rapidly takes place, i.e., in direct opposition to the attraction of gravity the heavy gas ascends and the light gas descends until they become perfectly mixed in both vessels.

Note. -The property of gaseous diffusion bas a very intimate bearing upon the composition of the air. If either of the constituents of the air Trero to separate from the mass, the extinction of life wonld soon follow. Besides were it not for the existence of this property, various vapors would accumulate in certain localities, as large cities, manufacturing districts, rolcanic regions, \&ic., in such quantities as to render them totally uninhabitable.
210. In addition to the gases already mentioned, atmospheric air always contains more or less water in the form of invisible vapor. This is derived partly from combustion, respiration and decay, but chiefly from spontaneous evaporation from the surface of the earth. The amount of invisible rapor thus held in solution depends upon the temperature of the air being as high as $\frac{1}{3-}$ of the weight of the air in very hot weather, and as low as $\frac{1}{5} \frac{1}{10}$ in cold.
211. The blue color of the sky is due to light that has suffered polarization, and which is, therefore, reflected light, like the white light of the clouds. The air appears to absorb to a certain extent the red rays and yellow rays of solar light and to reflect the blue rays. In the higher regions the blue becomes deeper in color and is mixed with black. The golden tints of sunset depend upon the large amount of aqueous vapor held in solution by the air.
212. Air, like all other material bodies, possesses the properties of impenetrability, extension, inertia, porosity, compressibility, elasticity, \&c. (See Arts. 11-18.)

[^9]1II. If an india-rubber bak or a bladder be inflated with air, and prea. sure applied, it is found that there is a material something within which keeps the sides asunder,-that material something is atmosplierle air.

Note 2.-The Inertia of atmospheric air is shown:-
I. By the force of wind, which is nothing more than air in motion. 11. By attempting to run on a calm day, carrying an open umbrella.
III. By the apparent current of wind experienced on a perfectly calm day by a person standing on tho deck of a stcamboat, or the platform of a railway car when in rapid motion, which current is caused by the body displacing the air.
IV. By causing a feather and a ball of lead to fall in a racuum, when it is observed that they fall with the fame velocity. In the atmosplere, however, the ball falls faster than tho feather because it contains a greater amount of matter with the same extent of surface as the feather, and hence, meets with less resistance from the inertia of the air.
213. Air, in common with all other forms of matter, is aeted on by the attraction of gravity, and consequently possesses weight.

Note 1.-To prove this is the fundamental fact in the science of parumatics, wo take a glass globo capablo of containing 100 cubic inches, and after weighing it accurately, withdraw from it, by means of an air pump, all the air it contains. When we weigh it again we find that its weight is about 81 grains less than when filled with air.

100 cubic inches of Atmospherio air weigh

100		Oxygen	"	31	"
100	"	Nirrogen	"	30	"
100	${ }^{\prime}$	Carbonic acid	"		1
100	"	Ilydrogen	"	${ }^{3}$	"

Note 2.-Although a small quantity of air when examined appears to be almost imponderable, the aggregate weight of the entire atmosphere is enormons, being equal to:
I. Five thousand millions of millions of tons; or
II. A globe of lead 66 miles in diameter; or
III. An ocean of water covoriag the whole surface of the earth to the depth of 32 feet; or
IV. A fratum of mercury covering tho entire surface of the globe to the depth of 30 inches.
214. Since the air is ponderable and also compressible, and since the lower stratum has to sustain the pressure of the superincumbent portion, it necessarily follows that the air is denser near the surface of the earth than in the higher regions of the atmosphere.
215. The density of the air decreases in geometrical progression, while the elevation inereases in arithnetical progression. That is at the height of 2.7 miles, the atmospheric pressure is reduced to one-half, at twiee that heieht to one-fourth, at three times that height to one-eighth, $\mathcal{A} c$.

Note.-The following table exhibits the donsity, elasticity and pre sure of the air at the different elevations given. Ilalley fixed tho height at which the pressure is decreased to onehalf at $3 \frac{1}{2}$ uiles, but a more carelul
collection, by 1 iot and A rago of the obserrations made on the A indes and in balloons respecting the npward decreaso of pressure and temperature, has led to the adoption of 2.7 miles as the point at which we may say that one-lalf of the atmosphere is beneath us.

height in miles.	dexisity.	HEIGHT, IN IN., OF COLUAR OF MEECURT	PRESSURE TN LBS. TO THE SQ. INCH.
2.7	$\frac{1}{2}$	15	$7 \cdot 5$
$5 \cdot 4$	$\frac{1}{4}$	7.5	$3 . \%$
S.1	$\frac{1}{8}$	3.75	1.870
$10 \cdot 8$	$\frac{1}{16}$	1.55	.937
$13 \cdot 5$	$3 \frac{1}{32}$	-937	-468
16.2	64	-408	234
15.9	T ${ }^{\frac{1}{2} 8}$	-254	-117
$21 \cdot 6$	¢ ${ }^{\frac{1}{6} \text { \% }}$	-117	058
$24 \cdot 3$	$\frac{1}{515}$. 038	-029
27.0	1029	-029	-014
29.7	20148	-014	. 007

216. The pressure of the air is a necessary consequence of its weight, and is equal, at the level of the sea, to about 15 lbs . to the square inch.
Nrre.-By saying that the pressure of the atmosphere is equal to 15 lbs . to the eq. inch, we meals that it is capable of balancing a column of mersury 30 inches in height; and a colnmn of mercury 30 inches in height and having a sectional area of 1 sq . inch, weighs 15 lbs . Or in other words, that a colnmn of air having a sectional area of 1 sq. inch, and extending from the level oi the sea to the 10 p of the atmosphere, weighs 15 lbs .
217. Air at $60^{\circ} \mathrm{F}$. is 810 times as light as water, and 10466 times as light as mereury. It follors that the pressure of the atmosphere is equal to that of a column of air of the same density as that at the surface of the earth 810 times 32 fcet or 10466 times 30 inches in height. That is, if the air were throughout of the same density that it is at the level of the sea, it would extend to the height of a.) out 5 miles.
218. The particles of elastic gases, unlike those of solids or liquids, possess no cohesive attraction, but on the contrary a powerful repulsion, by means of which they tend to separate from one another as far as possible.
219. Permanently elastic fluids, such as atmospheric
air, and certain gases, are chiefly distinguished from nomclastic fluids, such as water, by the possession of almo t prefect clasticity and comprossibility.

Note.-Air and certain gases as Oxygen, Hydrogen, Nitramen, \&-c., are called permanemtly clastic to diztingui In them from a num bev of cthr is as Carbonle Acid, Nitrons ()xide, \&c., which under great prewne and antense cold pass first into the lipuid and finally into the solid state.
220. If a liquid be placed in a cylinder Fig. 20. under the piston, it will remain at the same level, no matter to what height the piston may be raised above it, but if a portion of air or any other clastic gas be thus placed in the cylinder, and the piston be air-tight, the confiued air will expand upon raising the f iston and will always fill the space bencath it, however great this may become. This expansibility or tendency to enlarge its volume so as to entirely fill the space in which it is eneloscd is termed clasticity.
Note.-It is obvious that the elasticity of air is due to the repulsive power posessed by the particles.
221. The law determining the derisity and elasticity of gases under different pressures was investigated by Boyle in 1660, and afterwards by Mariotte.
Ninte.-To illustrate this law we take a bent glass tube Fig. 20, liaving one limb AC much longer than the other. The longer limb is open and the shorter furhished with a stop-cock.
Boll ends being open a quantity of mercury is pourerl into the tube and of course rises to the same level in buth legs-tho surface of the merenry at A a, sustaining the weight of a culumn of air "xtending to tha tup) (ithe atmophliore. We now elrise the kinpcock and thas shat of the pressure of the atmos where above that point, so that the surface es, cannot be affected by the weight of the atmosphere-i.e. cannut to intluenced by atmospheric prossure. Whe tind, however, that tho merenry in boil limbs remains at then same level, from which we infer that the clatic foren of the air contined abovea is equal to the weight of the whole column on a before the stop-cock was closed.

Hence the masticity of the air is equal to ils weipht which is erpual to a column of mercury 30 inches high.

If now we pour mercury into tho tube until the air confined nbove a is compressed into lialf its furmer volume, i.e., until theme reiry riu 10 hit the shorter tuhe, we shall tinel that the column of mercury 1 , 7 is evactly 8 , inches in lengit, or in other words, we liaro duabled the jre ure on tho
air confined in the shorter tube and hare decreased its volume to one-half its former dimensions, and at the same time donbled its elastic force, since it now reacts against the surface of the mercury with a force equal to 30 lbs. to the squaro inch.

If we increased the height of the Mercury in the longer leg to 60 inclies abore its height in the shorter leg, we shall compress the air into one-third its original volume and at the same time treble its elasticity, and so ou. Hence the law of Mariotte.

222. Mariotte's law may be thus enunciated:

I. The density and elasticity of a gas vary directly as the pressure to uhich it is subjected.
II. The volume which a gas occupies under different pressures varics inverse'y us the force of compression.
Note-Recent researches tend to prore that Mariotte's law is true only within certain limits, and that all gases vary from the law when subjecteid to very great pressures, their density increasing in a greater ratio than their elasticity. With atmospheric air the lav holds good to a far greater extent than with any other gas, the correspondence being found to be rigidly exact wheu the air is expanded to 300 volumes, and also when it is compressed into $\frac{1}{25}$ of its primary volume.

Mariotte's law would require the air to be indefinitely oxpansible, while we know that there is, beyoud all doubt, an upward limit to the atmesphere. Dr. Wollaston imagines that when the particles of air are driven a certain distanco apart by their mutual repulsive power, the weight of the individual particles comes at last to balance this repulsive force, and thus jrevent their further divergence. If this be the case, as is probable from various considerations, there is a limit to the rarefaction of a gas, arriving at which the gas ceases to expand further and comes to have a true upper surface like a liquid. As has been already remarked, this exact limit and npper surface of the atmosphero is supposed to be at an elevation certainly not greater than 45 miles-Biot fixes it at 30 miles; Bunsen and others place it at 200 miles.
223. The air-pamp, as its name implies, is an instrument used for pumping out or exhausting the air from any closed ressel.
224. The bell-shaped glass vessel usually attached to the air-pump is called a Receiver, and when the air is exhatsted as far as practicable from this, a vacuum is said to have been produced.

Note.-The air-pamp was invented by Otto Guericke, a celebrated burgomaster of Magdeburg, in the year 1550. At the close of the Inmerial Di it in $156 t$, he exhibited has first public experiments with it before the emperor and assembled princes and nobles of Germany. On this oceasion he exhansted the air from two 12 -inch hemispheres fitted together by ground edges, and greatly astonished his noble audieuce by showing that the combived strength of 12 horses was insufficient to pull them asunder.

The exhausting syringe of Otto Guericke was so impertect in its action that while using it he was compelled to keep it immersed in water to prevent the iuward leakage of the air. Since his time, however, the attention of many eminent men has been directed to the subject, and the form and construction of the air-pump have been greatly improved.
225. The exhausting syringe, which is the essential part of an air-pump, consists of a brass cylinder alcd, supplied
with an air-tight piston ef, and an arrangement of valves h \% , by meaus of which the air is permitted to pass out from the receiver q and through the piston $c f$, but not in the contrary direction.
Note.- When the piston of is raised the valve h closes, and as the piston in its ascent produces a partial vacuum beFig. 21. neath it, the air contalned in the receiver q opens the valvo k by its expansive power and thus refills the cylinder abcd. Now when the pistou is forced down again, the air contained in the cylinder tends to rush back into the receiver, butin doing so closes tho valvo k, and has therefore no other mode of escape than through h, thus passing above the piston to be lifted out at tho next etroke. In this manner tho air continues to bo exliausted until what remains in the receiver lias not sufliciont expansive power to plen the valve k, when the cxhaustion is said to be complete.

226. The principle upon which the air-pump acts is the clasticity or expansibility of the air, and since in order to enable the pump to act, the air contained in the receiver must possess sufficient clastic foree to raise the valve, it follows that a perfect vacuum cannot be secured by the air-pump. Thus, pumps of common construction will not withdraw more than $\frac{9 ?}{100}$ of the contained air, but the improved form is said to exhaust ${ }_{10}^{9 \frac{9}{0} \frac{9}{0} \frac{9}{0} \pi}$.

Note.-If we suppose the eylinder of the exhausting syringe to have the samu effectivo capacity as the receiver, and that tho piston passes at each stroke tho wholo length of the eylinder, it is evident that in raining tho 1 iston to the top of the cylinder aid then depressing it again to the bottom, che-halt of the air will have passed from tho receiver; the remaining half completely filling it, but liaving ouly half as much density and clasticity as bel'ore. The second stroke of the piston will reduce the nuantity, density, and elasticity, to one-fourth, the third to one-eighlb, and 80 un, as exhibited by the following table:

227. The condensing syringe, which is ased for fore ing air into a receiver or condensing chamber, differs fi w ill
exhausting syringe only in the fact that its valves open inward towards the chamber instead of outward.
228. The air pump is chiefly employed to illustrate the pressure and elasticity of the air.
Note 1.-The pressure of the atmosphere may be shewn by innumerable experiments among which are the following:

1. When the air is exhausted from tho receiver of an air-pump the reeciver is firmly fastened to the plate, and cannot bo removed until the air is re-admitted.
2. The hand placed on the open end of the receiver is pressed inward with a force sufficiently great to cause pain.
III. Thin Equare glass-tubes are crushed when the air is exhausted from them.
IV. In the surgical operation of cupping, the air is removed from a small cup which is then placed over an opened vein; the pressure of the air on the surrounding parts canses the blood to flow rapidly into the cup.
V. When a cask of beer is tapped, the beer does not run until a small holo called the vent-hole has been made in the apper part of the cask. Through this the atmospheric air enters and pressing on the surface of the beer with a foree of 1 j lbs. to the square inch, forees it through the tap.
VI. The useful small glass instruments called pipettes aet upon the principle of atmospheric pressure.
fiI. A hole is usually made in the lid of a tea-pot so as to bring into play the pressure of the atmosphere and thus cause the beverage to flow more rapilly.
FIII. Flies walk on glass or on the ceiling by producing a vacuum noder each foot which is thus pressed against the surface with a force sufficient to sustain the weight of the inseet. The gecko, a South American:lizard, has a similar apparatus attached to each.foot. And within the past few years a man has succeeded in walking across a ceiling with his head downwards, by alternately withdrawing and admitting the air between his feet and the ceiling.
II. l'neumatic chemistry, i. e., the mode of collecting gases over water depends upon the principle of atmospheric pressure.
X. If a tumbler or other glass vessel be filled with water and covered with a pieco of paper, and the hand be then placed firmly on the paper and the wholo suddenly and carefully inverted, the water does not flow out of the vessel upon removing the hand-being held by the upward pressuro of the a tmosphere.

X1. Suction is tho ctfect of atmospheric pressure, as illustrated by drawing liquids into the mouth, also by the leather sucker used by boys.

NII. The pressure of the air is ehown by tho faet that it supports or balances a column of mercury 3 inches or a cillumn of water 32 feet in height.

IIII. The presure of the atmosphere retards ebullition or boiling. Thus if some boiling water be partially eooled and then placed under the receirer of an air pump and the air exhausted, the water recommences to boil, owing to the decreased pressure. Or if a flask containieg boiling water be corked and the water be allowed to cool partially, upon plunging the tlask in a large vessel of cold water, the water in the flask again begins to boi, the reason is, the cold water condenses the vapor in the upper part of the flask and thus produces a partial vaeuum.

Note 2-The elasticity of the air may be shown by various experiments among which are the following:

1. Tho exhaustion of the receiver of the air-pump is a proof of the elastieity of the air.
I1. The elasticity of the air is shown by placing a thin square bottle with its mouth closed, under the receiver, and exhausting the surrounding air the bottle is broken by the elastic force of the contained air.
III. When some withered fruit, as apples, fige, or raisias, with uubroken skins are placed under the recelver, and tho surroming air exlausted, they becomo plump from the elasticity of tho included air.

1 V. The elasticity of alr is shewn by the operation of tho air-gun.
V. Tho elasticity of the air is taken adrantage of in applying air as a stufting materizl for cushions, pillows, and beds.
229. The barometer (Greek buros "weight" and metreo "I measure") is an instrument desigued to measure the variations in the amount of atmospheric pressure.
Note.-The barometer was invented about the middle of the siventeenth century by Torricelli, a pupil of the celebrated Gialileo.
230. The essential parts of a barometer are:

1st. A well formed glass tube 33 or 34 inches luag, closed at one end and having a bore equal throughout, of two or three lines in diameter. The tube contains pure mercury only, and is so arranged that the mercury is supported in the tube by the pressure of the atmosphere ; and
2nd. An attached graduated seale and various applianees for protecting the tube and aseertaining the exact height of the column of mercury.
Note. - The vacant epace between the top of the columin of mercury and the top of the tube is called tho Torricelian veccum, in honor of the inventor of the barometer, and in a good instrument is the most perfect vacuum that can bo produced by mechauical means.
231. The excellency of a barometer depends principally upon the purity of the mereury in the tube, and the purfectness of the Torricellian vacuum.
The value of the instrument may be tested:-
1st. By the brightness of the colunn of mercury, and the absence of any speck, flaw, or dullness on its eurface.
2nd. By tho barometric light; i. e., flashes of electric light produced in the dark in the Torricellian yacuum by the friction of the mercury against tho glass.
3rd. Fy the clearness of the ring or clicking sound produced by making tien increury striko the top of the tubu, and which is greatly mudilied when any particles of air are present above the colurna.
232. The cause of all the oscillations in the barometer is to be found in the unequal and constantly varying di.,tribution of heat over the earth's surface. If the air is much heated at any spot it expands, rises above the mas: of air, and rests upon the colder portions surroundiner it. The aseended air consequently flows off laterally firm above, the pressure of the air is decreased in the warmer place and the barometer falls. In the colder surrounding
places, howerer, the barometer rises, because the air that ascended in the warmer regions is diffused over and presses upon the atmosphere of these cooler parts.
Note.-It is found that the fluctuations in the height of the barometer vary greatly in extent in different latitudes-being so small in tropical regions as almost to escape notico, and comparatively so fitful and extreme in the temperate and frigid zones as to defy all attempts at reducing them to any system. In our climate the column varies in leight froma little over 30 inches as a maximum, to a little over ${ }^{2} 7$ inches as a minimum. Within the torrid zono the column of mercury scarcely ever exhibits any disturbance greater than what would occur in Canada before a slight thander storm-but such a disturbance is there the sure and rapid precursor of one of those mighty atmospheric convulsions which sometimes desulate vast regions and which are frequently as disastrous in their effects as the most violent earthquakes.
233. Besides the irregular fluctuations depending upon the weather, the barometer is subject to regular semi-diurnal oscillations depending upon atmospheric tides, caused by the heat of the sun-the two maxima of pressure always oceurring at about $9 \mathrm{a} . \mathrm{m}$. and $9 \mathrm{p} . \mathrm{m}$. and the two minima at about $3 \mathrm{a} . \mathrm{m}$. and $3 \mathrm{p} . \mathrm{m}$.
Note.-The semi-diurnal oscillation is greatest at the equator, where it averages one-tenth ot an inch-diminishing to six hundredfles of an inch in lat. 30°, beyond which it still decreases, and in our climate becomes completely masked by the irregular fluctuations peculiar to the temperate and frigid zones.
234. USE OF THE BAROMETER AS A WEATHER-GLASS.
I. The stute of the weather to be expected depends not so much upon the absolute height of the column of mercury as upon the RAPIDITY AND EXTENT OF ITS MOTION whether rising or fulling.
Note.-If the mercury have a convex surface, the column is rising; if the surface is concave, the column is falling ; when the surface is flat, the column is usually changing from one of these states to the other.
II. A fall in the burometer generally indicates approaching rain, high winds, or a thunder storm.
III. A rise in the mercury commonly indicates the approach of fine weather; sometimes, however, it indicates the approach of a snow storm.
IV. A rapid rise or fall in the mercury indicates a sudden change of weather.
r. A steady rise in the column, continued for two or three days, is generally jollowed by a long continuance of fine settled weather.

V1. A steady fall in the column, continued for two or three days, is commonly followed by a long continuance of rainy weather.
VII. A fluctuating state in the herght of the mercury coincides with unsettled weather.

Note.-The barometer is far more valuable as a means of ascertaining approaching changes in the state of the wind than in foretelling the approach pf wet or dry weather.
235. To ascertain the height of mountains, \&c., ty the barometer.

HALLEY'S ROLE.

I. Find the logarithm corresponding to the number which expresses the height in inches of the column of mercury in the barometer at the level of the sca.
II. Find also the logarithm corresponding to the number which expresses in inches the height of the column in the burometer at the top of the mountain or other given elevation.
III. Subtract the latter of these logarithms from the former, multiply the remainder by the constant number, 62170, and the result will be the elevation in English fect.

Note.-The number 62170 in this rule and $\mathbf{C 3 9 4 6}$ in the following, wero selected by Halley for certain mathematical reasons into which it is unnecessary to enter.

Example 281.-On the top of a certain mountain the barometer stands at the beight of $21 \cdot 793$ incbes, while on the surface of the earth it stands at 29.780 inches; required the heiglit of the mountain.
solution.
Logarithm of $29 \cdot 780=1 \cdot 473925$ and logarithm of $21 \cdot 793=1 \cdot 323317$. Then from $1 \cdot 473925$ Subtract 1-328317

$$
\text { lemainder }=145608 \times 621 \% 0=9052 \text { feet, Ans }
$$ RULE WITII CORRECTION FOR TEMPERATURE.

1. Obtain, as before, the difference between the logarithms of the numbers cxpressing the heights at which the mercury stands at the surfuce of the earth and on the summit of the mountain.
iI. Multiply this difference by the constant number, 63946-the result is the elevation in feet, if the mean tempcrature of the surface of the earth and the elevation is $69^{\circ} 68^{\circ} \mathrm{Fhr}$.
III. If the mean temperature of the two elevations be not $69 \cdot 68^{\circ}$ Fhr., add $\frac{1}{8} \pi$ of the whole weight found for each degree above $63 \cdot 68^{\circ}$, or subtract the same quantity if the mean temperature be below.

Example 282.-Humboldt found that at the level of the sea, near the foot of Chimborazo, the mercury stood at the height of 30 inches, while at the summit of the mountain it was only 14.85 inches. At the same time the temperature at the base of the monntain was 87° Falir., and at the top 50.40° Fahr. What is the height of Chimborazo?
 $8 i^{\circ}+50.4^{\circ}=18 i^{\circ} \cdot 4^{\circ}$
$\frac{2}{2}=68 \cdot 700^{\circ}$

> Then $1.477121-1 \cdot 171724=305397$
> And $\cdot 305307 \times 63916=19539$ feel.

Since the mean temperature of the two stations is 1 less than 69.68°, we deduct $-\frac{1}{\wedge} \sigma$ of the elevation found.
$\tau_{7}^{1} \cdot \frac{0}{0}$ of $19539=40.7 \mathrm{ft}$. and $19539-40-7=19498.3 \mathrm{ft}$. Ans.
LESLIE'S RULE.
for measuriva heights by the barometer without the use of LGGARITHMS.
I. Note the exact height of the column of mercury at the bcse und at the summit of the elevation.
II. Then say, as the sum of the two pressures is to their difference, so is the constant number 52000 to the answer in feet.

Example 283.-The barometer in a balloon is observed to stand at a height of 22 inches, while at the surface of the earth it stands at 29.8 inches; what is the elevation of the balloon?

$$
\begin{gathered}
23+29 \cdot 8: \begin{array}{c}
\text { SOLUTION. } \\
\text { Or, } 51 \cdot 8: 7 \cdot 8:: 522: 52000: \text { Ans } \\
52000 \times 0 \cdot 1 \\
51 \cdot 8
\end{array}=7830 \cdot 1 \mathrm{ft..} \text { Ans. }
\end{gathered}
$$

exercise.

284. At what height would the mercury stand in the barometer at an elevation of 29.7 miles above the earth's surface? Ans. 0.0146 inches.
Note.-Divide 297 by 2.7 (See Art. 212,) the quotient is 11 , then divide 30 inches by 211 , i. e. 2018, and the result is the answer.
285. At what height will the barometer stand in a balloon which is at an clevation of $16 \frac{1}{\mathrm{~L}}$ miles?

Ans. 46875 inches.
286. *It is observed that while the barometer at the base of a mountain stands at a height of 30 inches, at the top of the mountain it stands at a height of only 18 inches, required the height of the mountain? Ans. 13000 feet. 287. * While the mercury at the base of a mountain stands at the height of 20.5 inches, at the summit of the monntain the barometer indicates a pressure of only 20.4 inches, what is the height of the mountain? Ans. $9482 \cdot 9$ feet.
288. WWhile in a balloon the barometer indicates a pressure of ouly 19 inches, at the surface of the carth

* Use Leslie's rule.
\dagger Use Halley's rule with correction for temperature ; i. e., tho second of the rules given.
the pressure is 29.04 inches-taking the mean temperature of the two stations at 72.50°, what is the elevation of the balloon? Ans. 12703 feet.

236. The common pump consists of a barrel $S B$, a tube $A S$, which descends into the water reservoir, a piston col, moving air-tight in the barrel and two valves, x and x, which aet.in the same manner us in the exhausting syrinye of the air pump.
Note 1,-When the machine begins to act the piston is raised and produces a vacuum bolow it in tho barrel, and the atmospheric pressure on the water in the reservoir forces it up tho tube and through the valve x into the lower part of the barrel. As the piston descends the valve: closes and the water obtainod in tho barrel passes through tho valvo v almeve tho piston to be lifteil ont at tho next stroke. Hence the common pump is sometimes called a lifting pump.
Note 2.-Since the specific gravity of mereury is $13 \cdot 596$ and the presaure of the atmosphere sustains a column of mercury, 30 iuches in height-it follows that atmospheric pressuro will sustain a column of water 30×13.696 inches, or 31 ft . In height. Henco the vertical distance of the valvo x alove the surface of the water in the reservoir must bo less than 34 feet, or taking the varlations in atmospheric pressure into account, about 32 fect.
237. The forcing pump consists of a suction fump A, in which the piston P is a solid plug without a valve. When the piston P descends the valve v closes and the water is forced through the valve v^{\prime} into the chamber $M N$. The upper part of this chamber is filled with compressed air, which, by the pressure it exerts against the surface of the water, $w w^{\prime}$ drives it with considerable force through the pipe or tube $H G$.

Note.-Sometimes the forcing pump is used A withont the air chamber, $M A N$. Fig 23 ex hibits the arrangement of the valves, \&c., in a common tire engine with the exception that thero is anofher similar forcing pump on the other kide of the air clamber. 110 ; re,pesents the tubo leading to the hose.

Fig. 23.

238. The Syphon is a bent tube of glass or other material having one leg somewhat longer than the other, and is used for transferring liquids from one ve.el to another.

Fore. - The machine is set in operation by immersing the shorter log in the liquid to be decanted, and sucking the air out of the tube, when the pressure of the atmosphere forces the liquid into the syphon over the bend and down through the longer leg. Instead of sucking the air out of the syphon, the instrument may be set in operation by first filling it with the liquid, and, while thus full, placing the finger over eachend, and immersing the shorter leg in the liquid.

Note 2.-In order to understand why one limb must bo ehorter than the other, it is only necessary to remember that the pressuro of the atmosphere acts as much at ono extremity as at the other. If wo raise

Fig. 24.
 the column of liquid as far as B, by sucking at the extremity C, and then withdraw the mouth. the water falls back into the vessel F. The column will likewise run back if we get it 10 farther than L, which is the lercl of the water in the vessel F, becauso at that point the upward pressure of the atmosphere prevails over the downeard pressure of the liquid, but if we get the column helow L, the downward pressure of the liquid exceeds the upward pressure of the atmosphere, and the liguid will flow.

Thus the motion of the fluid in the syphon is similar to the motion of a chain lianging orer a pulley,-if the two parts of the chain be cqual, the Hoid remains at rest, but if one end be longer than the other, it moves in the direction of the longer; and frcsh links, so to speak, are added contiunously to the fluid chain by the atmospheric pressure exerted on the surface of the water.

CHAPTER VII.

DYNAMICS.

239. When the forces which are the subject of investigation are balanced, the consideration of them properly comes under the science of Statics; but when they cease to be balanced, and the body acted upon is set in motion, other principles become involved, and the investigation of these constitutes the more complex science of Dynamics.
240. Statics is a deductivc science, since all its facts are deducible, like those of Arithmetic and Geometry, from abstract truths; dynamics is an inductive, experimental, physical scicnce, many of its principles being capable of proof only by an appeal to the laws of nature.
241. Force may be defined to be the cause of the change of motion, i.e., force is required :-

1 st. To change the state of a body from rest to motiou, or from motion to rest.

2nd. To change the velocity of motion.
3 rd . To change the direction of motion.
242. liorces are cither instantancous or continued, and continued forees are cither accelerating, constunt, or rctarding.
243. Motion may be defined to be the opposite of rest, or a continuous changing of place.
244. Motion has two qualities. direction!and velocity, and is of three kinds-

1st. Direct;
2nd. Rotatory or Circular ; and
3rd. Vilratory or Oscillatory.
245. An accelcrating, constant, or retarding torce produces an uccelerated, uniform or retarded motion.
246. Velocity is the degree of speed in the motion of a body, and may be cither uniform or varicel. It is uniform when all equal spaces, great or small, are passed over in equal times.
247. The principles of the composition and resolution of force are equally applicable to motion.
248. Momentum, or Motal Force or Quantity of Motion, is the force exerted by a mass of matter in motion.
249. The momenta of a body depends upon its weight and relocity, thus:
I. When the velocities of two moving bodies are equal, their momenta are proportional to their masses.
II. When the masses of two moring bodics are equal, their momenta are proportional to their velocities.
III. When neither the masses nor velocities of two moving bodies are equal, their momenta are in proportion to the products of their weights by their velocities.
Nors.-When we speak of multiplying a valocity by a weight, we refer to multiplying the number of units ot weinht by the uumber of units of velocity, and at makes no difference what n!uits ol each kind are employed, for the product, thus obtained, means nuthing by itsell; but wily by comparison with other products similarly obtained by the use of the same units.

For example, whon we say that a weight of 11 lbs . moving 6 feet per eccoud, has umomentum of G6, all we mean is, that in this case the wright strikes a body at rest with 66 times the force that a body weighing one lb. and moving oully one foot per second would exert.
250. If a moving body M, having a velocity I, strike another m at rest, so that the two masses shall coalesce, and more on together with a velocity r, then $M \times \mathrm{T}-$
$(M+m)+v$; or whatever momentum may be aequired by the body m_{3} must be lost by M.
251. If a moving body M, having a velocity V, strike another body m, moving in the same direction, with a velocity r, so that the two may coalesce, and move on together with a velocity vel,-then $M \times V+m \times v=(M+$ $m) \times$ vel, or in other words the two bodies united have the same momentum that they separately had before impact.
252. If a moving body M, having a velocity V, strike another body m moving with a velocity v, in the opposite dircetion, so that the two masses shall coalesce and move on together with a velocity vel,- then $M+V \sim m \times v=$ $(M+m) \times v e l$, or in other words, the body moving with least foree will destroy as much of the momentum of the other, as is equal to its own momentum.
253. If a moring body M, having a velocity V, strike another body m moving obliquely towards it with a velocity i, so that the tro masses shall coatiesce and more on together, then by representing their momenta, just before impact, by lines in the direction of their motion and completing the parallelogram, the diagonal will represent the quantity and direction of the momentum of the combined mass.

Example 289.-What is the momentum of a body weighing 78 lbé, and moving with a velocity of 20 feet per second.

SOLUTION.

Momentum $=i 8 \times 20=1560$. Ans.
That is, the momentum of euch a body is 1050 times as great as the momentum of a body weighing only 1 lb ., and moving only 1 ft . per second.

Example 290.-If a body weighing 67 lbs. be moving with the relocity of 11 feet per second, and strike a second body at rest weighing 33 ibs., so that the tiro bodies may coalesce, and more on together, what will be the velocity of the united mass?
solution.
Art. 250 . - If M be the moving body, V its velocity, m the body at rest, and v the velocity of the united mass:-
Then $(M+m) \times v=M \times \Gamma$ and therefore $v=\frac{M \times V}{M+m}$
In this example, $M=6 \overline{7}, V=11$, and $m=33$.
Then $v=\frac{M \times V}{M+m}=\frac{6 i \times 11}{6 i+33}=\frac{737}{100}=i \cdot 37$ feet per second. Ans.

Example 291.-If Ω body weighing 50 lbs ., and moving with a velocity of 100 ft . per second, come in contact with another body weighing 40 lbs , and moring in the same direction with n velocity of 20 feet per sccond, so that the two bodies coalesce and move on together, what will be the relocity and momentum of the united mass?

gOLUTION.

Art. 251. -If M and m be the two bodies, and V^{r} and v their separate velocities, and vel the velocity of tho united mass;--
Then $(M \div m) \times v e l=M \times V+m \times v$. Hence vel $=\frac{M \times V+m \times V}{M+m}$
In this example $M=50, m=40, V=100$ and $r=20$.
Then $V^{\prime} c l=\frac{M \times \bar{V}+m \times v}{M+m}=\frac{50 \times 100+40 \times \overline{20}}{60+40}=\frac{500+800}{50}=\frac{5800}{90}$
$-64^{4} \mathrm{ft}$. per second, and momentum $=(50+40) \times 64^{4}=5800$. Ans.
Example 202 .-If a body weighing 120 lbs., and moving to the east with n velocity of 40 feet per second, come into contact with a second boly weighing 90 lbs., and moving to the west, with Ω speed of 80 feet per second, so that the two bodies conlesce and move onward together, in what direction will they move, with what velocity, and what will be their monentum? gOLUTION.
From Λ rt. 252 , if M and m be the bodies, and V and v their respective velocities, and vel the velocity of the mited mass after impact:-
Then $(M+m) \times v e l=M \times V \sim m \times v$ and hence
$v e l=\frac{M \times V \sim m \times r}{\mathrm{I}+11}$
In this example $1 T=120, m=90, y^{-}=40$ and $n=5 n$.
Then vel $=\frac{M \times V \sim m \times v}{M \times m}=\frac{(120 \times 40) \sim(90 \times 80)}{120+M 0}=\frac{4800 \sim i 200}{210}$ 2 ± 00
$=-\frac{20}{20}-11_{2}^{3}$ feet per second $=$ the velocity. $1^{1} \frac{3}{7} \times(120+30)=11_{7}^{3} \times$ $210=2100=$ momentum.

And sinco 90×80, the momentum of the bony moving to the wert is graster than 120×40, the momentum of the body moving to the past, the united mass moves to the west.

EXERCISE.

293. What is the momentum of Ω body weighing 79 lbs., moving with Ω velocity of 64 feet per second?. nns. 5056 .
204 . Which would strike an objest with the greatest force, a bullet weighing one ounce and propelled with Ω velucity of 2000 feet per second, or a ball weighing 5 lbs , and thrown with a velocity of 28 feet per second?

Ans. Momentum of bullet $=125$.

$$
" \quad \text { of ball }=140 \text {. }
$$

295. Which has the greatest momentum, a train of cars weighing 170 tons and moving at the rate of 40 miles per hour, or a steamer weighing 790 tons and moving at the rate of 9 miles per hour? Ans. Momentum of train $=6800$, of steamer $=7110$, and therefore the latter has most momentư.
296. If a body weighing 60 lbs . and moving at the rate of 86 feet per second, come in contaçt with another body weighing 400 lbs ., and moving in the same direction at the rate of 12 feet per second, so that the two bodies coalesce and move on together; what will be the velocity and momentam of the united mass ?
Ans. Velocity $=21 \frac{15}{2}$ feet per second ; momentum= 9960 .
297. If a body weighing 56 lbs . and moving with a velocity of 80 feet per second come in contact with a body at rest, weighing 70 lbs., so that the two bodies coalesce and move on together; what will be the velocity of the united mass? Ans. $35 \frac{5}{9}$ feet per second.
298. If a body weighing 77 lbs. and moving from south to north, with a velocity of 40 feet per second, come in contact with another body weighing 220 lbs, and moving from north to south, with a velocity of 14 feet per second, so that the two bodies coalesce ; in what direction and with what velocity does the united mass move?
Ans. Their momenta exactly neutralize each other and the bodies come to a state of rest.
299. If a body weighing 70 lbs ., moving to the south with a velocity of 70 feet per second, come in contact with another body which weighs 80 lbs . and is moving to the north with a velocity of 60 feet per second, so that the two bodies coalesce and move on together ; in what direction will they move and with what velocity and momentum? Ans. To the south with velocity of 8 inches per second. Momentum of united mass $=100$. 300. If a body weighing 600 lbs . and moving to the west with a velocity of 40 feet per second, come in contact with a second hody weighing 50 lbs . and moving to the east with a relocity of 20 feet per second, and after the two have coalesced they come in contact with a third body which weighs 100 lbs ., and is moring in an opposite direction with a velocity of 150 feet per second, and the three then coalesce and move on together; in what direction will their motion be, and what will be the velocity and momentum of the anited mass?

Ans. Direction, west. Velocity $=10 \frac{2}{3}$ feet. Momentum $=8000$.
254. When force is communicated by impact to a body at rest, the body will remain at rest until the foree is distributed throughout all the atoms of the mass, unless a fragment be broken off by the foree of impact, in which case this fragment alone moves.

LAWS OF NOTION.

255. The first laty of motion.-Every body must persevcre in a state of rest or of uniform motion in a straight line, unless it be compelled to change that state by force impressed upon it.
256. Ter second law of motion.-Every change of motion must be in proportion to the impressed force, and must be in the direction of that straight line in which the impressed force acts.
257. Third law of motion.-All action is attended by a corresponding re-action, which is equal to it in force and opposite in direction.
These laws are commonly known as Sir I. Newton's laws of motion-in reality however the first is due to Kepler, the second to Newton, and the third to Galileo.
258. When a moving elastic body strikes against the surface of another body, the direction of its motion is changed, and the motion thus resulting is said to be reflected. Here:-

1st. The angle at which the moving body strikes the surfase of the other is called the angle of incidence;

2 nd . The angle at which the moving body rebounds is called the angle of reflection; and

3 rd . The angle of reflection is always equal to the angle of incidence.
259. In a vacuumi, all bodies, whatever may be their form or density, fall towards the centre of the earth in vertical lines and with equal rapidity; but in ordinary circumstances, i. e., falling through the air, only heavy bodies fall in vertical lines, and the density and form of a body materially affect its velocity.
260. The resistance which a body encounters in moving through the atmosphere or any other fluid, varies :-

1st. As the surface of the moving body.
2nd. As the square of the velocity of the moving body. (Sce Art, 147.)

Note.-In the case of beavy bodies falling through the air, the resistance of the atmosphere produces a considerable discrepancy between the actual fall of bodies and the distance through which they should theoretically tall. Thus, it has been found by experimeut that a ball of lead dropped from the lantern of St. Panl's Cathedral required $4 \frac{1}{2}$ seconds to reach the pavement, a distance of $2 \pi 2$ feet. But in $4 \frac{1}{2}$ seconds the ball ought to have fallen 324 feet by theory, the difference of 52 feet being due to the retarding force of the atmosphere.
261. A heavy body falling from a height moves with a uniformly accelerated motion, since the attraction of gravity which causes the descent of the body never ceases to act, and the falling body gains at each moment of its descent a new impulse, and thus an increase of velocity, so that its final velocity is the sum of all the infinitely small but equal increments of velocity thus communicated.
262. Hence the relocity of a falling body at the end of the second moment of its descent is Twice that which it had at the end of the first second; at the end of the third second, three times that which it had at the end of the first; at the end of the fourth, foer times, \&c.
263. Hence also a heary body starting from a state of rest and fulling during any time, acquires a velocity, which would in the same space of time carry it through twice the space it has passed over.
264. It has been ascertained by numerous and careful experiments, that a falling body acquires at the end of the first second of its descent, a relocity equal to that of $32 \frac{1}{6}$ feet per sccond, and bence daring the first second of its descent a body falls through one-half of $32 \frac{1}{6}$ feet, i. e., through $16 \frac{1}{1 \frac{1}{2}}$ fect.

Note 1.-The average speed of the falling body is the arithmetical mean betreen its initial and terminal velocitics, or in the case of the first second of its fall, between 0 and $32 \frac{1}{6}$, and this is $16 \frac{1}{12}$.
Note 2.-In the following excrcises we shall use 32 and 16 in place of 32_{6} and $16 \frac{1}{12}$, since the fractions materially increase the labor of making the calculations without illustrating the principles any better than the whole numbers used alone.
265. ANALYSIS OF THE MOTION OF A FALLING BODY.

NCMBER OF SECONDS.	SPACE PASSED OVER EACII SECOND.	TERMINAL VELOCITIES.	TOTAL BPACE.
2	1	2	1
3	3	4	4
4	5	6	9
5	7	8	16
6	9	10	25
7	11	12	36
8	13	14	49
9	15	16	64
10	17	18	81
	19	20	100

Note.-The numbers in the second, third and fourth columns mean 80 many times 16 feet.
From this it is evident that:-
I. The spaces through which the body descends in equally successive portions of time, increase as the odd numbers, $1,3,5,7,9, \& c$., and hence the space through which the body fulls during any sccond of its flight, is found by multiplying 16 feel by the odd number which corresponds to that second; i. e., one less than twice the number of the second.
II. The final velocity acquired by a fulling body at the end of successive equal portions of time, varies as the even numbers, 2, 4, $6,8, \& c$., and hence the final velocity acquired by a body at the end of any second of its fall, is found by mulliplying 16 feet by iwice the number of seconis.
III. The whole space passed over by a body fallinr during equal successive portions of time, varies as the square of the numbers, $1,2,3,4, \& c .$, and hence the whole space passed over during any given number of seconds, is f)und by multiplying 16 feet by the square of the number of seconds.
263. Jet $t=$ the time of descent in seconds, $v=$ the terminal velocity, i. c., the velocity acquired at the end of the last second of its fall, $s=$ whole space passed over, and $g=32, \mathrm{i}$, e., the measure of the attraction of gravity.

Then Art. 263, the time is equal to the space divided by lialf the termi. minal velocity, or $t=\frac{8}{\frac{1}{2} v}=\frac{28}{v}$

Again (Art. 265, III) the whole space passed over is equal to 16, i. e., lialf of the gravity, g, multiplied by the square of the time or $s=\frac{1}{2} g^{t^{2}}$.
Also (Art. 2C5, I) the terminal velocity is equal to 16 , \mathbf{i}. e., $\frac{1}{2} g$ multiplied by twice the time or $v=\frac{1}{2} g \times 2 t=g t$.
These three formulas, viz: $s=\frac{1}{2} g t^{2}, v=g t$ and $t=\frac{2 s}{v}$ are fundamental, and the remaining six of the following table are derived from them by transpositton and substitution:-
TABLE OF FORMULAS FOR DESCENT OF BODIES FALLING FREELY THROCGH SPACE.

so.	civen.	TO FIND.	formulas.	Whence derived.
I $I I$ III	$\begin{array}{ll} t, & g \\ v, & g \\ t, & v \end{array}$	δ	$\begin{aligned} & s=\frac{1}{2} g t^{2} \\ & s=\frac{v^{2}}{2 g} \\ & s=\frac{1}{2} t v \end{aligned}$	Art: 265, III. From formula V. From formula VII.
IV v $V I$	$\begin{array}{ll} g, & t \\ g, & s \\ s, & t \end{array}$	v	$\begin{aligned} & v=g t . \\ & v=\sqrt{2 g s .} \\ & v=\frac{2 s}{t} \end{aligned}$	Art. 265, I. From IV and VII by sub. stituting the value of t. From formula VII.
VII VIII $I X$	$\begin{array}{cc} s, & v \\ r & g \\ s, & g \end{array}$	t	$\begin{aligned} & t=\bar{v} \\ & t=\frac{v}{g} \\ & t=\sqrt{g} \end{aligned}$	$\begin{aligned} & \text { Arl. } 263 . \\ & \text { From formula IV. } \\ & \text { From formula I. } \end{aligned}$

267. When a body is thrown vertically upward it rises with a regularly retarded motion, losing $3 \ddot{\text { feet of its }}$ original relocity every second, and it occupies as much time in rising as it wrould have required in faling to acquire its initial velocity.
268. If a body be projected upwards or downwards with a given initial velocity F, and is at the same time acted apon by the force of gravity, then when the body descends, in t seconds the initial velocity alone nould carry it throngh It feet, and gravity alone would carry it throngh $!g t$ feet, therefore together they carry it through $V t+\frac{1}{2} g t^{2}$ teet, and the iersuiual velocity will evidently be $\mathrm{V}+t g$.

When the hody ascemds the initial velocity acting alome would carry it in t seconds throngh I' t feret, bat in t spennils tha force of gravity would draw it downward through dita feet, and therefore its whole ascent will be $I^{\prime} t-\frac{1}{2} g t^{2}$, and its terminal velocity will be $I^{\prime}-j t$. Hence.
$(X) s=V t+\frac{1}{2} g t^{2}$ when the boily lescends.
$(X I) s=V t-\frac{1}{2} g t^{2}$ when the body ascends.
$(X I I) v=V+15$ wher the body descends.
$(X I I I) v=V$ - ts when the boily ascends.
Example 301.-Through how many feet will a body fall during the 11 th second of its descent?

SOLUTION.

From Art. 205, 1. space $=\{(11 \times 2)-1\} \times 16=(22-1) \times 16=21 \times 16$ $=336$ feet. Ans.

Example 302.-Through how many feet will a body fall during the $17 \mathrm{th}^{\prime}$, the 43 rd , and the 61 st second of its descent? soluttion.
For the 17 th second $17 \times 2=34-1=33 \times 15=528$ fert. Ans.
For the $43 \mathrm{rd} \quad " \quad 43 \times 2=86-1=85 \times 16=1300$ fert. Ans. For the 61st " $61 \times 2=122-1=121 \times 16=1936$ feet. Ans.

Example 303. - What will be the terminal velocity of a falling lody at the end of the 9 th second of its descent?
solution.
Formula IV. $v=g t=32 \times 9=288$ feet per second. Ans.
Example 304.-What will be the terminal velocity of a falling body at the end of the 25 th second of its fall, also at the end of the 33 rd second?

SOLUTION.
Formula IV. $v=g t=32 \times 2 ;=800$ feet per second at end of $25{ }^{5}$ th second. $v=g t=32 \times 33=1056$ feet per second at end of $33 \mathrm{rd} \quad$ "
Example 305.-Through how many feet will a body fall during 5 seconds?

sclution.

Formula I. $s=\frac{1}{2} g t^{2}=\frac{1}{2} \times 32 \times 5^{2}=16 \times 25=400$ feet, Ans.
Example 30c.-Tbrough how many feet will a body fill in 12 seconds?
goletion.
Formula I. $s=\frac{1}{2} g^{2}=\frac{1}{2} \times 32 \times 12^{2}=16 \times 144=2304$ feet. Ans.
Example 307.-If a body has fallen until it bas acquired Ω terminal velocity of 400 feet per second, what is the whole space through which it has descended?

SOLUTION.
Formula II. $8=\frac{r^{2}}{2 g}=\frac{400^{2}}{2 \times 32}=\frac{160000}{64}=2200$ feet. Ans

Example 308.-How long must a body fall in order to acquire a terminal velocitv of 1000 feet?
solution.
Formula V1II. $t=\frac{v}{g}=\frac{1000}{32}=311_{4}$ seconds. Ans.
Example 309.-How long must a body fall in order to acquire a terminal velocity of 8000 feet per second?
solution.
Formula VIII. $t=\frac{v}{g}=\frac{8000}{32}=250$ seconds. Ans.
Example 310 . -What time does a body require to fall through 11200 feet?
solution.
Formula 1 $\mathbb{X} \cdot \mathrm{t} t=\sqrt{\frac{2 s}{g}}=\sqrt{\frac{2 \times 11200}{32}}=\sqrt{700}=26 \cdot 45$ seconds. Ans.
Example 311.-When a body has descended through 4400 feet, what relocity has it acquired?
solution.
Formula V. $v=\sqrt{2 g s}=\sqrt{2+32 \times 4100}=\sqrt{281600}=530 \cdot 6 \mathrm{ft}$. per second.
Example 312.-If an arrow be shot vertically upwards and reach the ground again after the lapse of 20 seconds, to what height did it rise?

SOLETION.

From Art. 267 it appears that the arrow will be as long ascending as descending, and bence the problem is reduced to finding the distance throngh which the arrow will fall in half of 20 seconds, i. e., in 10 seconds.
Then formula I. $s .=\frac{1}{2} g t^{2}=\frac{1}{2} \times 32 \times 10^{2}=16 \times 100=1600$ feet. Ans.
Example 313.-If a cannon ball be fired vertically with an initial velocity of 1600 feet per second, to what beight will it rise?

solutios.

First, the time it ascends is equal to the time it wonld require if descending to acquire a terminal velocity of 1600 feet.
By formula VIII. $t=\frac{v}{g}=\frac{1600}{32}=50$ seconds $=$ time of ascent.
Then formula XI. $s=V t-\frac{1}{2} t^{2}=1600 \times 50-\frac{1}{2} \times 32 \times 50^{2}=80000-16$ $\times 2500=80000-40000=40000$ feet Ans.

Exayple 314.-If a body be shot upward with an initial velocity of 1200 feet per second, at what height will it be at the end of the 10th second, and also at the end of the 70th second of its flight?

SOLUTION.

Formnla NI. $s=V t-\frac{1}{2} g t^{2}=1200 \times 10-\frac{1}{2} \times 32 \times 10^{2}=1200-1600=$ 10400 feet = eleration at end of 10 th second.
Also $1200 \times 70-\frac{1}{2} \times 32 \times 70^{2}=84000-16 \times 4900=84000-784000=5606$ feet = elevation at end of the joth second.

Example 315.-If a cannon ball be fired vertically with an initial velocity of 2400 feet per second :-
lst. In how many seconds will it again reach the ground? 2nd. How far will it rise?
3rd. Where will it bo at the end of the 40 th second?
4th. What will be its terminal velocity?
. 5 th. In what other moment of its flight will it have the same velocity as at the end of the 19 th second of its ascent?

golution.

Since the initial velocity $=$ terminal velocity $=2400$ feet.

1. Formula V1II. time of ascent $=\frac{v}{g}=\frac{2400}{32}=\frac{7}{0}$ seconds, and sinco it is as long ascending as descendine, it again reaches the ground in 150 sec.
II. Formula I. $s=\frac{1}{2} y t^{2}=\frac{1}{2} \times 32 \times 75^{2}=16 \times 5625=90000 \mathrm{ft}$. $=$ height to which it rises.
11I. Formula XI. $s=V^{\prime} t-\frac{1}{2} g t^{2}=2400 \times 40-\frac{1}{2} \times 32 \times 40^{2}=96000-16$ $\times 1600 \leftrightharpoons 96000-25600=70400 \mathrm{ft}$. 三elevation at end ot 40 th second.
1V. Terminal velocity = initial volocity $=2400$ feet per second.
V. Since the whole time of fliglit $=150$ seconds, and, sinco at all equal spaces of time from tho inoment it ceases to ascend and begins to desecnd, the velocity is the same in rising as in falling, it follows that the moment. in which the body has the same velocity as at thoend of the 19th second of its ascent is 19 full seconds before it again reaches the ground, or in 150 $19=131$ st second, i. e., in the end of the 13lst second.

Example 316. - If a body is thrown downwards from an elevation with an initial velocity of 70 feet per second, how far will it descend in 27 seconds?

solution.

Formula $X . s=V t+\frac{1}{2} g t^{2}=i 0 \times 2 \bar{i}+\frac{1}{2} \times 32 \times 2 . i^{2}=1800+16 \times 720=$ $1890+11664=13554 \mathrm{ft} . \quad$ Ans.

Example 317. -If a body is thrown down from an elevation with an initial relocity of 140 feet per second, what will be its velocity at the end of the 30 th second?
solution.
$v=V+t g=140+33 \times 32=140+960=1100$ feet per second. Ans.
Example 318. -If a body be projected vertically with an initial velocity of 400 fect per second, what will be its velocity at the end of the 12 th second?

BOLUTTION.

Formula XilI. $v=V-t g=400-12 \times 32=400-3 S 4=16$ feet per second. Ans.

Example 319.-If a cannon ball be fired rertically upwards with an initial velocity of 1800 feet per second:-

1st. In how many seconds will it again reach the ground?
2nd. What will be its terminal velocity?
3rd. How far will it rise?
4th. Where will it be at the end of the 90 th second?
5 th. In what other moment of its flight will it have the same velocity as at the end of the 27 th second of its asceut?

SOLUTION.

I. $t=\frac{v}{\pi}=\frac{1800}{32}=56 \frac{1}{4}=$ time of ascent or deseent, hence whole time of ilight $=56 \frac{1}{4} \times 2=112 \frac{1}{2}$ seconds.
II. Terminal velocity $=$ initial velocity $=1800$ feet per second.
III. Formula 1. $S=\frac{1}{2} g t^{2}=\frac{1}{2} \times 32 \times\left(56_{4}^{\frac{1}{4}}\right)^{2}=16 \times 3164 \cdot 0625=50625 \mathrm{ft}$.
IV. Formula XI. $S=V t-\frac{1}{2} g t^{2}=1800 \times 90-\frac{1}{2} \times 32 \times 90^{2}=162000-16$ $\times 8100=162000-129600=32400 \mathrm{ft} .=$ elevation at end of the 90 th second.
V. $112 \frac{1}{2}-27=85 \frac{1}{2}=$ middle of 86 th second of flight.

Example 320.-A stone is dropt into the shaft of a mine and is heard to strike the bottom in 9 seconds; allowing sound to travel at the rate of 1142 ft . per second, and taking $g=32 \frac{1}{6}$; required the depth of the shaft.

SOLLTION.

Let $x=$ time stone takes to fall. Then $(9-x)=$ time sound takes to reach the top and $x^{2} \times 16 \frac{1}{12}=$ depth of shatt $=(9-x) \times 1142$ feet.

$$
\text { Therefore } \frac{193 x^{2}}{12}=1028-1142 x
$$

$193 x^{2}+18704 x=123336$.
$148996 x^{2}+10579488 x+187799616=95215392+187799616=$ 233015008.
$355 x+13704=16823+$
$356 \dot{c}=3119$
$x=8.0808=$ number of seconds body was talling.
$9-x=9-8 \cdot 0803=\cdot 9197=$ time sound travelled.
And $1142 \times \cdot 9197=1050 \cdot 2974$ feet $=$ depth ot ehaft.
Example 321.-A body has fallen through m feet wher another body begins to fall \approx a point n feet below it ; required the distance the latter body will fall before it is passed by the former ?

FIRST SOLUTION.

At end of $m \mathrm{ft} . t=\sqrt{\frac{2 s}{g}}=\sqrt{\frac{2 m}{g}}$, and $v=g t=g \sqrt{2 m}=\sqrt{2 m g}$, and since
$n=$ distance to betraversed $t=\frac{n}{\sqrt{2} m g}$, hence $S=\frac{1}{2} g t^{2}=\frac{1}{2} g \times$
$\left(\frac{n}{\sqrt{2 m g}}\right)^{2}=\frac{1}{2} g \times \frac{n^{2}}{2 m g}=\frac{n^{2}}{4 m} . \quad$ Ans.

SECUND BOLETION．

Let $x=$ distance．Then $($ of $2 \mathrm{nd}=$ bordy $) t=\sqrt{\frac{2 S}{g}}=\sqrt{\frac{2 r}{g}}$ and
$\sqrt{\frac{(2 m+x+x)}{g}}=$ entire time taken by the first body to pass through whole space．
Then $\sqrt{\frac{2(m+n+x)}{g}}-\sqrt{\frac{2 m}{g}}=\sqrt{\frac{2 x}{g}}$ and multiplying all by $\sqrt{ } g$ ． $\sqrt{2(m+n+x)}-\sqrt{2 m}=\sqrt{2 x}$ ． $\sqrt{2(m+n+x)}=\sqrt{2 x}+\sqrt{2 m}$ ，and squaring． $2(m+n+x)=2 x+2 m+2 \sqrt{4 m x}$ ．
$2 m+2 n+2 c=2 x+2 m+2 \sqrt{4 m x}$.
$2 n=4 \sqrt{m x}$ ．
$n=2 \sqrt{m x}$ ．
$n^{2}=4 m x$ ．
$\because x=\frac{n^{2}}{4 n i}$ ．Ans．

－Exercise．

322．Through bow many feet will a body fall during the 37 th second of its descent？

Ans． 1168 ft ．
323．Through what space will a body descend in 25 seconds？
Ans． 10000 ft ．
324．With what velocity does a body move at the close of the 20 th second of its fall？Ans． 640 ft ．per see．
325．During bow many seconds must a body fall in order to ac－ quire a terminal velocity of 1100 ft ．per sec．？
Ans. 34⿺辶⿱亠乂寸

326．Through what space must a falling body pass before it ac－ quires a terminal velocity of 1700 ft ．per sec．？

Ans． 451561 ft ．
327．What will be the terminal velocity of a body that has fallen through 25000 ft ．？

Ans． $1264 \cdot 8 \mathrm{ft}$ ．
328．If a body is projected upwards with an initial velocity of 6000 ft ．per second，where will it be at the end of the 40 th second？

Ans．At an elevation of 214400 ft ．
329．If a body be thrown downward with an initial velocity of 120 ft ．per second，through how many feet will it fall in 32 seconds？

Ans． 20224 ft ．
330．A cannon ball is fired verticall 5 ，with Ωn initial velocity of 1936 per second ：－

[^10]1st. How far will it rise ?
2nd. Where will it be at the end of the 6th second ?
3rd. In how many seconds will it again reach the ground?
4th. What will be its terminal velocity ?
5 th. In what other moment of its flight will it have the same velocity as at the end of the 13 th second of its ascent ?

Ans. 1st. 58564 ft .
2 nd. At an elevation of 11040 ft . 3rd. 121 seconds.
4th. 1936 ft . per second.
5th. At end of 108 th sec. of flight.
331. If a body be projected vertically with an initial velocity uf 4000 feet per second, taking gravity to $32 \frac{1}{6}$ feet:-
1st. How high will the body rise ?
2 nd . Where will it be at the end of the 50 th second?
3rd. Where will it be at the end of the 100th second?
4th. Where will it be at the end of the 200th second?
5th. In what time will it again reach the ground?
Ans. 1st. 248704-66 ft.

2nd. At an elevation of	$159791 \cdot 66 \mathrm{ft}$.	
3rd.	"	239166.66 ft .
4th.	"	156666.66 ft .
5th.	$248 \cdot 70$ seconds.	

332. If a cannon ball be fired vertically with an initial velocity of 1100 feet per second, what will be its velocity at the end of the 7th second, at the: end of the 20 th second, and at the end of the 33rd second?
$\begin{aligned} & \text { Ans. End of the } 7 \text { th sec. vel. }=876 \mathrm{ft.} \\ & \text { " } 20 \mathrm{th} \text { " } \\ & \text { " } 33 \mathrm{rd} \quad 460 \mathrm{ft.}\end{aligned}$
333. If a stone be dropped into a well and is seen to strike the water after the lapse of 5 seconds, how deep is the well ? Ans. 400 ft .
334. If a stone be thrown downwards with an initial velocity of 250 ft . per second, what will be its velocity at the end of the 3rd, the 9 th, the 30 th and the 90 th seconds of its descent?

335. A stone is dropt into the shaft of a mine and is heard to strike the bottom in $12 \cdot 76$ seconds, assuming that sound travels at the rate of 1100 ft . per second, what is the depth of the mine ?
336. A body has fallen through 400 feet, when another body begins to fall at a point 2500 feet below it ; through what space will the latter body fall before the former overtakes it? Ans. $3906 \ddagger$ feet.
337. A body \mathcal{A} has fallen during m seconds, when another body B begins to fall, f feet below it; in what time will A overtake B ?

$$
\text { Ans. } \frac{f}{32 m}
$$

DESCENT ON INCLINED PLANES.

269. When a body is descending an inclined plane, a portion of the gravity of the body is expended in pressure on the plane and the remainder in accelerating the motion of the descending body.
270. The following are the laws of the deseent of bodies on inclined planes :
I. The pressure on the inclined plane is to the weight of the body as the base of the plane is to its length.
II. The tcrminal velocity of the descending body is that which it would have acquired in falling freely through a distance equal to the height of the plane.
III. The space passed through by a body falling freely is to that gone over an inclined plane, in equal times, as the length of the plane is to its height.
IV. If a body which has descended an inclined plane mects at the foot of it another inclined plane of equal allititude, it wall ascend this plane with the velocity acquired in coming down the former, it will then descer.d the second and re-ascend the former plane, and will thus continue oscillating down one plane and up the other.
Note.-The same takes place if the motion be made in a curve Instead of on an inclined plane. In practice, however, the resistance of tho atmosphero and friction retard tho motion very greatly at each oscillation and very soon bring the body to a state of rest.
271. The final velocity, neglecting friction, on arriving at the bottom of the plane, is dependent solely on the height of the plane, and will be the same for all planes of equal height, however various may be their lengths; and the times of deseent are exactly proportional to the lengths of the planes.
272. If in a vertical semicircle any number of cords be drawn from any points whatever and all meeting iu the lowest point of the semicirele, and a number of bodies be allowed to start along these cords at the same instant, they will all arrive at the bottom at the same instant, and at every instant of their descent they rill all be in the circumference of a smaller circle.
Thus in the accompanying figure if $A D P$ be a semicirclo and $B P, C P$, $D P, E P, F P$, any cords, and balls beallowed to start simultaneously from A, B, C, D, E, and F, they will all arrivo at P at the same instant. At the cnd of one-fourth the entire time they take to fall to P, A will have arrived at g, and the other bodies will be in the circumference $g P^{P}$; at the end of one-half the time of descent all will be in the circumference h, \&c.
273. Bodie; descending curves are subject to the same law as regards velocity as those on inclined planes, i. e., the terminal velocity is due oniy to the perpendicular fall.
274. The Brachystochrone (Greek brachistos, "shortest," and chronos, "time,") or curve of quickest descent, is a curve somewhat greater than a circular curve, being what mathematicians denominate a cycloid, or that which is described by a point in the circumference of a carriage wheel rolling along a plane.
275. Since Art. 270, the effect of gravity as an accelerating force on a body descending an inclined plane is to the effect of gravity on a body freely falling through the air as the height of the plane is to its length; we have accelerating force of gravity on inclined plane $: g:: h: l$; and hence accelerating force of gravity on inclined planes $=\frac{g h}{l}$,

$$
\begin{gathered}
\text { where } h=\text { height of plane. } \\
l=\text { length. } \\
g=\text { effect of gravity }=32
\end{gathered}
$$

Substituting this value of the effect of gravity in the formulas in Art. $26 t$ we get the following formulas for the descent of bodies on inclined planes

FORMULAS FOR DESCENT OF BODIES ON INCLINED PLANES.

ко.	GIVEN.	FIND	FORMULAB.	CORRESPONDIN: FURMCLAIN Art. 266.
1	g, h, l, t		$s=\frac{g h t}{2 l}$	I
2	g, h, l, v	\&	$s=\frac{l v^{2}}{2 g h}$	11
3	t. v		$s=\frac{1}{2} t v$	III
4	s,t		$v=\frac{2 s}{t}$	VI
5	g, h, l, t	v	$v=\frac{g h t}{t}$	IV
6	g, h, l, s		$v=\sqrt{l h s}$	V
7	s, v		$t=\frac{2 s}{v}$	VII
8	g, h, l, v	2	$t=\frac{l v}{g h}$	VIII
9	g, h, l, s		$v=\sqrt{\frac{2 / s}{g h}}$	IX

276. When the body is projected down an inclined plane with a given initial velocity $V ; s=T t+\frac{g h t^{2}}{2 l}(10$. and $v=V+\frac{g h t}{l}(11)$. When the body is projected up an inclined plane with a given initial velocity $V ; s=V t$ $g h t^{2}$
$2 l$
(12.) and $v=V-\frac{g h t}{l}$

Note. - When a body is thrown up an inclined plane, tho attraction of gravity acts as a uniformly retarding forco as when a body is projected
vertically into the air. In the case of the inclined prane the body will continue to rise with a constantly retarded motion until $V t=\frac{g h t^{2}}{2 l}$ when it will remain stationary for an instant and then commence to descend. 'It will occupy the came time in coming down as in going np: its terminal velocity will be the same as its initial velocity, and it will have the same velocity at any given point of the plane both in ascending and descending.

Example 338.-Through bow many feet will a body fall in 15 seconds on an inclined plane which rises 7 feet in 40 ?
eosetion.

Here $t=15, h=7, l=40$, and $g=32$.
Then $s=\frac{g h t^{2}}{2 l}=\frac{22 \times 7 \times 15^{2}}{2 \times 40}=630$ feet. Ans.
Example 339.-Through how many feet mast a body bave fallen on an inclined plane, baving a rise of 3 feet in 32 , in order to acquire a terminal velocity of 1700 feet per second?
solution.
Here $g=32, v=1700, h=3, l=32$.
Then $s=\frac{l v^{2}}{2 g h}=\frac{32 \times 1700^{2}}{2 \times 32 \times 3}=481666 \frac{2}{3}$ feet. $\Delta n s$,
Exauple 340.-What will be the velocity at theend of the 20 th sec nd, of a body falling down an inclined plane, having an inclination of 7 feet in 60 feet?

solution.

Here $g=32, t=20, h=7$, and $l=60$.
Then formula 5. $v=\frac{g h t}{l}=\frac{32 \times 7 \times 20}{60}=74 \frac{z}{3}$ feet per second. Ans.
Example 341.-On an inclined plane rising 3 ft . in 17 , a body has fallen through one mile, what velocity has it then acquired?

SOLUTION.
Here $s=1$ mile $=5280 \mathrm{ft} . h=3, l^{\prime}=17$ and $g \doteq 32$.
Then formula TI. $v=\sqrt{\frac{2 g h s}{l}}=\sqrt{\frac{2 \times 32 \times 3 \times 52 ¥ 0}{17}}=\sqrt{59632 \cdot 9 t}=$ $244 \cdot 17$ feet per second. Ans.

Example 342.-In what time will a body falling down an inclined plane, baving a rise of 7 feet in 16, acquire a terminal relocity of 777 feet per second?
solction.
Here $g=32, h=7, l=16$, and $v=777$.
Then formula 8, $t=\frac{10}{h g}=\frac{16 \times 777}{32 \times 7}=55 \frac{1}{2}$ seconds. Ans.
Exauple 343.-In what time will a body fall through- 4780 feet on an inclined plane, baving a rise of 3 feet in 4 ?
solution.
Here $g=32, h=3, l=4$, and $s=4780$.
Then formula 9. $t=\sqrt{\frac{\overline{2 l s}}{g \underline{h}}}=\sqrt{\frac{2 \times 4 \times 4780}{32 \times 3}}=\sqrt{398 \cdot 3}=19.9$ seconds.

Exayple 344.-If a body be projected dorfu an inclined plane, baving a rise of 8 feet in 15 , with an initial velocity of 80 feet per second, through what space will it pass in 40 seconds?

solution.

Here $v=80, g=32, h=8, l=15$, and $t=40$.
Then formula $\left.10.8=V t+{ }_{2 l^{-}}^{g h t 2}=40 \times 80+\frac{32 \times 8 \times 402}{2 \times 15}=3200+13653\right\}$ $=168 \pi 3 \mathrm{ft}$. Ans.

T- \rightarrow wple 345 .-f a body be projected un an inclined plane having a rise of 5 feet in 16, with an initial velocity of 2000 ft . per second:-

1st. How far will it rise?
2nd. When will it again reach the bottom of the plane?
3rd. What will be its terminal velocity?
4 th. Where will it be at the end of the 100 th second?
5th. In what other moment of its flight will it have the same velocity as at the end of the 11 th second of its ascent?

BOLETION.

Here $h=5, l=16, g=32$, and $v=2000$.
Then formula $8, t=\frac{l v}{g h}=\frac{16=2000}{5 \times 32}=200$ seconds.
1st. Formula 12. $s=V^{\prime} t-\frac{g h t t^{2}}{2 l}=200 \times 2000-\frac{32 \times 5 \times 2()^{2}}{2 \times 16}=400000$ $-200000=200000 \mathrm{ft}$. Ans.
2nd. Ascent $=200 \mathrm{sec} .+$ deseent $200 \mathrm{sec} .=400 \mathrm{sec}$. Ans.
3rd. Terminal velocity $=$ initial velocity $=2000$ feet per sec. Ans.
4th. Formula 12. $s=V^{\prime} t-\frac{g h t 2}{2 l}=100 \times 20000-\frac{82 \times 5 \times 1002}{2 \times 16}-200000$
$-50000=150000=$ elevation at end of 100 th sec . Ans.
5th. $400-11=383$ th second.

EXERCIST.

346. On an inclined plane rising 5 feet in 19 , through what sprce will a body descend in lalf a minute? Ans. $3789{ }_{1}^{4} \mathrm{~g} \mathrm{ft}$.
347. On an inclined plane rising 3 feet in 13 , what velocity will a descending body acquire in 39 seconds? Ans. 288 feet per second.
348. What time does a body require to descend through 3800 feet on a plane rising 19 feet in 32? Ans. 20 seconds.
349. If a body be projected down an inclined plane, having a fall of 7 in 11 with an initial velocity of 50 feet per second, what will be its velocity at the end of the 44 th second?

Ans. 946 feet per second.
350. If a body be thrown down an inclined plane having a rise of 13 feet in 32 with an initial velocity of 100 feet per second, through how many feet will it descend in 130 sceouds? Ans. 122850 feet.
351. If a body be projected up an inclined plane, having a fall of 5 feet in 8, with an initial velocity of 800 feet per second :-
1st. How far will it rise?
2nd. In how many seconds will it again reach the bottom of the plane?
3rd. What will be its terminal relocity?
4 th. Where will it be at the end of the 68th second?
5th. In what other moment of its flight will it have the same velocity as at the end of the 37 th second of its ascent?
Ans. 1st. Rise $=16000 \mathrm{ft} . ; 2 \mathrm{nd}$. Time of flight $=80$ seconds; 3rd. Terminal velocity $=800$ feet per second; 4th Elevation at end of 68th sec. $=8160$ feet; 5th. At the end of the 43 d second.
352. A body rolls down an inclined plane, being a rise of 7 ft . in 20 -when it has descended through f feet, another body commences to descend at a point m feet beneath it. Through how many feet will the second body descend before the first body passes it?

$$
\text { Ans. } \frac{m^{2}}{4 f}
$$

PROJECTILES.

277. A projectile is a solid body to which a motion has been communicated near the surface of the earth, by any force, as muscular exertion, the action of a spring, the explosive effects of gunpowder, \&ce, which ceases to act the moment the impulse has been given.
278. A projectile is at once acted upon by two forces, -

1st. The projectile force which tends to make the body move over cqual spaces in equal times; and
2nd. The force of gravity, which tends to make the body more towards the centre of the earth over spaces which are proportional to the squares of the times.
Under the joint influences of these two forces the projectile describes a curve, which in theory is the parabola, but which in practice departs very materially from that figure.
Note 1. The parabola is that carre which is produced by cutting a cone paralled to its side.
NoTz 2.- The parabolic theory is based upon three suppositions, all of which ard more or less inaccurate.
1st. That the force of gravity is the same in every part of the curre described by the projectile.

2nd. That the force of gravity acts in parallel lines,
3 rd. That tho projectilo moves througli a non-resisting metlium.
The first and second of theao suppositions differsso inseusibly from truth that they may bo assumed to bo absolutely correct, but the revistanco of the atmosphere so materially affects the motions of an boties, cispecially when their velocities are considorable, that it reuders the parabolic theory practically uscless.
279. When a body is projected horizontally forward, the horizontal motion does not interfere with the aetion of gravity, - the projectile deseending with the same rapidity while moving forward, that it would if acted upon by gravity alone.
Nose.-The accompanying figuro represents a tower 144 feetin lieight. Now ai three balls a, b, and c, bo mado to start simultancously from ${ }^{1}$. ono dropping vertically, ono being projected forward with sufficieut foren to carry It horizoutally half a mile, and the third with sufficient force to carry it horizontally to any other distance, say one mile, all threoballs will reach tho gromnd, provided it bo \& horizontal plane, at tho same instant. Thus eachball will havo fallen 16 feet at the end of the 1st second, and they will simultaneously cross tho line def. At tho end of the 2nd secoud they have each descended 64 feet, and are respectively at g, h, and s, \&c.

Fig. 26.

280. Aecording to the parabolic theory:-

1 st. The projectile rises to the greatest height, and remains longest before it again reaches the ground, when thrown vertieally upwards.
2nd. The distance or range over a horizontal plane is greatest, when the angle of clevation is 45°.
3 rd. With an initial velocity of 2000 per second, the projectile should go about 24 miles.
Note. - The first of these laws is found by experiment to be absolutely correct, and the sceond is not far from the truth, the greatest rauge taking place at an angle of eleration somewhat less than 40°.

The difforence between the third law and the result of experiment is prodizious; for no projectile, howerer great its iuitial velocity may have been, has efer been thrown from the surlace of the cartli to a horizontal distance ot 5 miles.
281. Whatever may be the initial velocity of projection, it is speedily reduced by atmospheric pressure to a velocity not excceding 1280 feet per second.

Nоте 1.-This arises from the fact that atmospheric air flows into a vacuum with a velocity of only 1280 feet per secoud, so that when a ball moves with a greater velocity than this, jt leaves a vacuum behind it into Which the strongly compressed air in freut tends puwerfully to force it.
NOTE 2.-From experiments made with great care, is has been ascertained that when the velocity of a ball or other projectile is 2000 feet per second, the ball meets with an atroospheric resistance equal to 10 J times its own weight.

Nota 3.-Another great irregalarity in the firing of balls arises from the fact that the ball deviates more or less to the right or laft, sometimes crossing the direct line several timesin a very short course. This deflectiou sometimes amounts from $\frac{1}{6}$ to $\frac{1}{4}$ of the whole 1 ange, or as much as 300 or 400 yards in a mile when there is considerable windage; i. e., when the ball is too small for the calibre of the gun.
282. The motion of projectiles has recently been investigated with much care, with the view of deducing a new theory in which the resistance of the air should be taken into account. The following are the most important results :

FREN THE BODY IS THROWN FERTICALLY OPWARDS INTO THE AIR.
I. The time of ascent is less than the time of descent.
II. The velocity of descent is less than that of ascent.
III. The terminal velocity is less than the initial velocity.
IV. The velocity of descent is not infinitely accelerated since when the velocity becomes very great, the resistance of the atmosphere becomes so great as to counterbalance the accelerating force of gravity, and the velocity of the descending body is thenceforth uniform.
WHEN THE PROJECTILE IS THROWN AT AN ANGLE OF ELEVATION.,
I. The ascending branch of the curve is longer than the descending branch.
II. The time of describing the ascending branch is less than that of describing the descending branch.
III. The descending velocity is less than the ascending.
IV. The terminal velocity is less than the initial.
V. The direction of the descending branch is constantly approximating to a rerticat line, which it never reaches.
VI. The descending velocity is not infinitely accelerated, but, as in case of a body falling vertically, becomes constant after reaching a certain limit.
VII. The limit of the velocity of descent is different in different bodies, being greatest when they are dense, and increasing with the diameter of spherical bodies.
283. The explosive force of gunpowder, fired in a piece of ordnance, is equal to 2000 atmospheres, or 30000 lbs . to the square inch, and it tends to expand itself with a velocity of 5000 feet per second.
Note.-Gunpowder is an intimate mixture of 6 parts saltpetre, 1 part clarcoal, and 1 part sulphur. In firing good perfectly dry gunpowder, the ignition takos place in a space of time so short as to appear instautaneous. 1 cubic inch of powder produces 800 cubic inclies of cold gas, and, as at tho moment of explosion tho gas is red hot, we may safely reckon tho expausion as about 1 into 2000 .
284. The greatest initial velocity that can be given to a cannou ball is little more than 2000 feet per second, and that only at the momeni it leaves the gun.
Note.-The velocity is greatest in the longest pleces; thus IItutton found tho velocity of a ball of given weight, fired with a given claarge of powder to be in proportion to the fifth root of tho length of the pices.
285. The velocities communieated to balls of equal weights, from the same piece of ordnance, by unequal weights of powder, are as the square roots of the quantities of powder.
286. The velocities communicated to balls of different weights and of the same dimensions, by equal quantities of powder, are inversely proportional to the square roots of the weights of the balls.
287. The depth to which a ball penetrates into an obstacle is in proportion to the density and diameter of the ball and the square root of the velocity with which it enters.
Note 1.-An 18 -pound ball with a velocity of 1200 feet per gecond penetrates 84 in abes into dry oak, and a 24 -pound ball with a velocity of 1300 ft . per second penetrates 13 feet into dry earth.
Note 2. -The length of guns has been much reduced in all possible cases. Field pleces are now seldom made of greater length than 12 or 14 calibres (diameter of the ball). The maximum charge of powder las also been diminished very greatly-now seldom exceeding one-third, and often belng as low as one-twelfth of the weight of the ball.
288. The following rule, obtained from experiment, has been given, to find the velocity of any shot or shell, when
the weight of the charge of powder and also that of the shot are known.

RULE.

Divide three times the weight of powder by the weight of the shot, multiply the square root of the quotient by 1600 , and the product will be the velocity per second in feet.

Or if $p=$ charge of powder $\mathrm{in} \mathrm{lbs} ., w=$ weight of ball in lbs. and $v=$ velocity per second in feet; then $v=1600 \times \sqrt{ }\left(\frac{3 p}{w}\right)$

Exayple 353.-What is the velocity of a ball weighing 48 lbs., fired by a charge of 4 lbs , of powder?
solution.
Here $p=4$ and $w=48$.
Then $v=1600 \times \sqrt{ }\left(\frac{3 p}{w}\right)=1600 \times \sqrt{ }\left(\frac{3 \times 4}{48}\right)=1600 \times \sqrt{ }\left(\frac{1}{4}\right)$
$=1600 \times \frac{1}{2}=800$ feet per second. Ans.
Example 354.-With what velocity will a charge of 7 lbs . of powder throw a ball weighing 32 lbs . ?

solution.

Here $p=7$ and $v=32$.
Then $v=1600 \times \sqrt{\frac{3 p}{w}}=1600 \times \sqrt{\frac{3 \times 7}{32}}=1600 \times \sqrt{\cdot 65625}=1600$ $\times \cdot 81=1296$ feet per second. Ans.

Example 355.-If 4 lbs. of powder throw a ball of 16 lbs . in weight with a velocity of 1200 ft . per second, what amount of powder would throw the same ball with a velocity of 600 ft . per second?

SOLUTION.

Art. 255. vel. : vcl. : : $\sqrt{ }$ (weight of powder) $: \sqrt{ }$ (woight of powder); or $1200: 600:: \sqrt{4}: \sqrt{x}$, and hence $x=1 \mathrm{lb}$. Ans.
Example 356.-If 3 lbs. of powder throw a ball 6 inches in diameter and weighing 32 lbs., with a velocity of 850 feet per second, with what velocity will the same charge throw another ball of the same dimensions but weighing only 9 lbs.?

SOLUTION.
Art. 286. $\sqrt{9}: \sqrt{32}:: 850: x$, or $3: 5 \cdot 65:: 850: x$.
And hence $x=1600$ feet. Ans.

EXERCISE.

357. With what velocity will a charge of 11 lbs of powder throw a cannon ball weighing 24 lbs. ?

Ans, 1876 feet per second
358. With what velocity will a charge of 9 lbs . powder throw a ball weighing 36 lbs.? Ans, 1385 feet per second.
359. If 7 poundg of powder throw a ball with a velocity of 1000 feet per aecond, what charge will throw the same ball with a velocity of 1500 teet per second? Ans. $15^{\frac{3}{4}} \mathrm{lbs}$.
360. If a certain charge of powder throw a 10 -inch ball weighing 20 lbs . with a velocity of 973 feet per second, with what velocity will the same charge throw a ball of the samu dimensions weighing only 25 lbs .?

Ans. 870 feet per second.

CIRCULAR MOTION.

289. Centrifugal force (Lat. centrum, "the centre," and fugio. "I flec"), is that force by which a body moring in a circle tends to fly off from the centre.
Note.-Since a body moving in a circle would, if not restrained by other torces, fy off in a tangent to that circle, centrifugal force is sometimes calied tangential force.
290. Centripetal foree (Lat. centrum, "the centre," and peto, "I seek or rush to "), is that force by which a body moving in a circle is held or attracted to the centre.
291. When a body is at once acted upon by both centrifugal and centripetal force, it moves in a curre, and the form of this curve depends upon the relative intensities of the two forces: i. e., if the two be equal at all points, the curve will be a circle, and the velocity of the body will be uniform ; but if the centrifugal force, at different points of the body's orbit, be inversely as the square of the distance from the centre of gravity, the curve will be an ellipse, and the velocity of the body will be variable.
292. When a body rotates upon an axis, all its parts revolve in equal times; hence the velocity of each particle increases with its perpendicular distance from the axis, and so also does its centrifugal force.
Note 1.-As long as the centrifugal foree is less than tho cohesive force by which the particlesare held together, the body can preserve itself; Lut, fisoon as the centrifugal force exceeds the collesive, the parta of the rotating mass fly offin directions which are tangents to the circles in which they were moving.
Note 2. We have examples of the effects of centrifugal force in the desfructive violenco with which rapidly revolving grindstones burst aud tly to pieces, the expulsion of water from a rotatiog mop, the prnjection of a stono from a sling, the action of the conical pendulum or goveruor in regulatug the supply of stcamin an engive, \&ic, \&ic.
293. When the velocity and radius are constant, the centrifugal force is proportional to the weight.
294. When the radius is constant, the centrifugal force varies as the square of the velocity.

Note.-At the equator the centrifugal force of a particle is $\frac{1}{z} \frac{1}{y}$ of its gravity or weight, and from the equator it diminishes as we approach the poles where it becomes 0 . It follows that it the earth were to revolve 17 times faster than it does, the centrifugal force at the equator would be equal to gravity, and a body would not fall thero at all. It the earth revolved still more rapidly, the water, inhabitants, \&c., would be whirled away into space, and the equatorial regions would constitute an impassable zone of sterility.
295. When the velocity is constant, the centrifugal force is inversely proportional to the radius.
296. When the number of revolutions is constant, the centrifugal force is directly proportional to the radius.
297. Let $c=$ centrifugal force, $v=$ the velocity per second in feet, $r=$ radius in feet, $g=32, w=$ weight, and $n=$ the number of revolutions per second.
Then $c=\frac{w v^{2}}{g r}(\mathrm{I}), r=\frac{w v^{2}}{c g}$ (II), $w=\frac{c g r}{v^{2}}(\mathrm{III}), v=\sqrt{ }\left(\frac{c g r}{w}\right)$ (IV).
Also, since $v=r \times 2 \times 3 \cdot 1416 \times n, v^{2}=r^{2} \times 4 \times(3 \cdot 1416)^{2} \times n^{2}$, and hence formula I. : $c=\frac{w \times r^{2} \times 4 \times(3 \cdot 1416)^{2} \times n^{2} \text { and re- }}{g r}$ ducing this we get $c=w r n^{2} \times 1 \cdot 2345(\mathrm{~V}), w=\frac{c}{r n^{2} \times 1 \cdot 2345}(\mathrm{VI})$, $r=\frac{u n^{2} \times 1 \cdot 2345}{c}$ (VII), and $n=V\left(\frac{c}{w r \times 1 \cdot 2345}\right)$ (VilII).

Example 361.-What is the centrifugal force exerted by a body weighing 10 lbs . revolving with a velocity of 20 feet per second in a circle 8 feet in diameter?

solution.

Here $v=10, v=20, r=4$, and $g=32$.
Then $c=\frac{20 v^{2}}{g r}=\frac{10 \times 20^{2}}{32 \times 4}=\frac{10 \times 400}{32 \times 4}=31 \frac{1}{4}$ lbs. Ans.
Example 362 . What centrifugal force is exerted by a body weighing 15 lbs , revolving in a circle 3 feet in diameter and making 100 revolutions per minute?

BOLUTIOW

Here $v=15, r=1 \cdot 5, n=\frac{100}{60}=1 \frac{2}{2}$
Then formula V.: $c=u \mathrm{wr}^{2} \times 1 \cdot 2345=15 \times 1 \cdot 5 \times\left(1 \frac{13}{}\right)^{2} \times 1 \cdot 2345=77 \cdot 15625$ lbs. Ans.

Exanple 363.-A body weighing 40 lbs . revolves in a circle 4 fect in diameter; in/order that its centrifugal force may be 1847 lbs., what must be its velocity and number of revolutions per second?

BOLUTION
Here $w=40 \quad \mathrm{~b}_{3} \quad r=2$, and $c=1847$.
Then formula V III. : $n=\sqrt{ }\left(\frac{c}{\text { wr } \times 1 \cdot 2345}\right)=\sqrt{ }\left(\frac{1847}{40 \times 2 \times 1 \cdot 2345}\right)$
$=\sqrt{18 \cdot 7019}=4 \cdot 32 \Rightarrow$ number of revolutions per second, and hence revo. lutions per minute $=256.8$.

Also $v=4 \times 3 \cdot 1416 \times 4.32=54 \cdot 28$ feet per second.
Example 364.-The diameter of a grindstone is 4 feet, its weight half a ton, and the centrifugal force required to burst it is 45 tons: with what velocity must it revolve, and how many revolations must it make per minute in order to burst?

> AOLUTION,

Here $w=\frac{1}{3}, c=45$, and $r=2$.
Then formula VIII. : $n=\sqrt{ }\left(\frac{c}{u c r \times 1 \cdot 2245}\right)=\sqrt{ }\left(\frac{45}{\frac{1}{2} \times 2 \times 1 \cdot 2345}\right)$
$=\sqrt{36 \cdot 452}=6.03=$ revolutions per second, and hence $6.03 \times 60=361.8$
$=$ the revolutions per minute.
Also velocity $=4 \times 3.1416 \times 603=75.755$ feet per second.

EXERCISE.

365. If a ball weighing 4 lbs. be attached to a string $2 \frac{1}{2}$ feet long and whirled round in a circle so as to make 120 revolutions per minute, -what musi be the strength of the string in order to just keep the ball from flying off?

Ans. $49 \cdot 38$ lbs.
366. A ball weighing 2 lbs . is attached to a string $3 \frac{1}{2}$ feet long and capable of resisting a strain of 200 lbs.; if the ball be whirled in a circle with the whole length of the string as radius, how many revolutions per minute must it make in order to break the string? Ans. 288\% revolutions.
367. A ball is whirled in a circle, with a relocity of 64 feet per second, by means of a string 4 feet in length and capable of resisting a strain of 840 lbs ; what must be the weight of the bali in order to break the string?
368. What is the centrifugal force exerted by a body weighing 20 lbs. revolving in a circle 10 feet in diameter and making 2.8 revolutions per second? Ans. 967.848 lbs.
369. What is the centrifugal force exerted by a body weighing 8 lbs. and revolving is a nircle 20 feet in diameter with a velocity of 100 feet per second ?

Ans. 250 lbs .

ACCUMOLATED WORK.

298. Work is required to set a body in motion or to bring a moving body to a state of rest. For example, when a common engine is first set in action a considerable portion of the work of the engine goes to give motion to the fly-wheel and other parts of the machinery ; and before the engine can come to a state of rest; all of this accumulated work must be destroyed by friction, atmospheric resistance, \&c.
299. To find the work accumulated in a moving body :BCLE.
I. Find the height in feet from which the body must have fallen to have acquired the given velocity.
II. Mulliply the number thus found by the weight of the body in pounds.

Or let $U=$ units of worlc accumulated, $v=$ velocity, $w=$ the weight in lbs., and $g=32$.
Then Art. 266, since $s=h=\frac{v^{2}}{2 g}$

$$
\dot{U}=h w=\frac{v^{2}}{2 g} \times w=\frac{v^{2} w}{2 g}
$$

Exayple 370 -A ball weighing 10 lbs . is projected on smooth ice with a velocity of 100 feet per second : assuming the friction to be $\frac{1}{15}$ of the weight of the ball, and neglecting atmospheric resistance ; over what space will it pass before coming to a state of rest?

solutiox.

Here $v=100, v=10$, and $g=32$.
Then $U=\frac{v^{2} v}{2 g}=\frac{100^{2} \times 10}{2 \times 32}=\frac{100000}{64}=1562 \frac{1}{2}=$ units of work sccumulated in the ball.
Also ${ }_{1}^{3} \frac{1}{5} \times 10 \times 1=\frac{2}{3}=$ units of work destroyed by friction in moving the ball through 1 foot.
Therefore the number of feet $=1062 \frac{1}{8} \div \frac{2}{3}=2343 \frac{3}{2}$. Ans,

Fxample 371.-A train weighs 100 tons and has a velocity of 40 miles per hour when the steam is turned off: how far will it ascend a plane baving an inclination of $\frac{1}{2}$ in 100, taking friction as 11 lbs, per ton, and neglecting the resistance of the atmosplar

sOLUTION.

Here $v=40$ miles per hour $=\frac{40 \times 5280}{60 \times 60}=58 \frac{3}{3}$ feet per second, $w=100$ tons $=200000 \mathrm{ibs}$. and $g=32$.
Then $U={ }_{2 g}^{v^{2} w}=\frac{(593)^{2} \times 200000}{2 \times 32}=\frac{341^{7}, \times 200000}{64}=3441_{y}^{7} \times 3125=$ $10-0 \cdot 555{ }_{y}=$ units of work accumulated in the train.
Work of friction $=100 \times 11=1100$ units to each foot.
Work of gravity $={ }_{2} \frac{1}{0}-2 \times 200000=1000$ units to each foot.
Work destroyed by resistances, i.e., friction and gravity, in moving the train over uno foot $=1100+1000=2100$ units.
Therefore number of feet $=\frac{107505505}{2100}=5121 \cdot 69$ feet $=$ nearly one mile.
Example 372.-If a car weighing 3 tons, and moving at the rate of 10 feet per second on a level rail, pass over 500 feet before it comes to a state of rest, what is the resistance of friction per ton?

solution.

Work accumulated in car $=\frac{102 \times 6000}{2 \times 32}=\frac{600000}{61}=9375$ units.
Work of frictlon $=$ friction $\times 500$.
Therefore friction $\times 500=93 \pi$, and hence friction $={ }_{500}^{9375}=183 \mathrm{lbs}$ on whole car.
Then friction per ton $=183 \div 3=6 \frac{1}{4} \mathrm{lbs}$. Ans.

exercise.

373. A train weighing 90 tons is moving at the rate of 30 miles per hour when the steam is shut off: how far will it go before stopping, on Ω level plane, assuming the coeflicient of friction to be $\frac{1}{2} \frac{1}{0}$? Ans. 6050 feet, or $18 \frac{7}{8}$ miles.
374. A train weighing 80 tons has a velocity of 30 miles per hour when the steam is turned off: how far will it ascend a plane rising 7 feet in 1000-taking frictiou, as usual, and neglecting atmospheric resistance?

Ans. $2880 \cdot 05$ feet.
375. Required the units of work accumulated in a body whose weight is 20 Jbs , and velocity 144 feet per second?
376. A ball weighing 15 lbs . is projected on a level plane, with a velocity of 90 feet per second : assuming friction to be equal to $\frac{1}{10}$ of the weight of the ball, how far will it go before it comes to a state of rest ? Ans. $1265 \cdot 625$ feet.
3i7. A train weighing 90 tons has a velocity of 100 feet per second when the steam is turned off: how far will it go on a level plane, assuming friction to be equal to 12 lbs. per ton, and neglecting atmospheric resistance?

Ans. $26041 \frac{2}{5}$ feet.
378. A ball weighing 20 lbs. is thrown along a perfectly smooth plane of ice with a velocity of 60 feet per second : how far will it go before stopping if the friction be $\frac{1}{2}$ of the weight? Ans. 1125 feet.
379. A train weighing 100 tons has a velocity of 25 feet per second when the steam is turned off : how far will it descend an incline of 3 in 100 , taking friction to be equal to 12 lbs. per ton?

Ans. $3255 \cdot 2$ feet.
380. Required the work accumulated in a body which weighs 50 lbs. and which is moving with a velocity of 70 feet per second.

Ans. $3828 \frac{1}{3}$ units.
381. What mork is accumulated in a ram weighing 2000 lbs. falling with a velocity of 40 feet per second?

Ans, 50000 nnits.

THE PENDULDM.

300. A pendulum consists of a heavy body suspended by a thread or slender wire, and made to vibrate in a vertical plane.
301. When the body is regarded as a point, and the thread or wire without weight, the pendulum is called a Simple Pendulum.
302. A Compound Pendulum or Material Pendulum consists of a heary body suspended by a ponderable wire or thread.
303. The motion of the pendulum from one extremity to the other of the are in which it moves, is called an oscillation or a vibration.
304. The amplitude of the are of vibration is measured by the number of degrees, minutes and seconds through which the pendulum oscillates.
305. The cluration of a vibration is the space of time occupied by the pendulum in swinging from one extremity to the other of the are of vibration,
306. The length of the pendulum is the distanee between the centre of suspension and the centre of oseillation.
307. The centre of suspension is the point round which the pendulum moves as a centre.
308. The centre of oscillation is that point in a vibrating body, into which, if all the matter were collected, the time of vibration would remain unchanged.
Note 1.-If a bar of iron or any other substance be suspended by one extremity and nade to vibrate, it constitutes a compound pendulum. Now, if the several particles composing the rod were free to move senaratcly, thoso nearer the centro of fuspension would vibrato more rapidly than thoso more vemote; but since the pendulum is a solid bedy, all of its particles anust vibrato in the fame time, and hence tho motion of those molecules which are nearer the centro of suspension is retarded, whilo that of the more remnto parts is necelerated. Somewhere in the rod, however, there must bo a point or particlo so situated with respect to the centro of suspension, and the other parts of the rod, this ${ }^{2}+3.3$ nccelerating efect cr the particles abovo it is exactly neutrallzed by the retarding firce of the molecules below it; and, consequently, this particlo or point vibrates in exactly the ramo time that it would occupy if liberated from ald connection with the parts above, below and around it, and wero set swinging by an imponderable thread-this point is called the centre of oscillation.
Note 2.-The centre of oscillation in a vibrating mass coincides with what is called tho centre of percussion. The centre of percussion is that point in a revolving body, whlch, npon striking against an immovablo obstacle, will causo tho whole of the motion accumulated in the revolving body to ba destroyed, so that, at tho moment of impact, the body would have no tendency po move in any direction. In a rod of inappreciable thickness the centre of percussion is two-thirds of the length of the rod from the axis about whicla it moves.
309. The centres of suspension and oscillation in the pendulum are interchangeable, i. c., if the pendulum be inverted and suspended by its centre of oscillation, tho former point of suspension will become the centre of oscillation, and the pendulum will vibrate in precisely the same time.

LAWS OF THE OSCILLATION OF THE PENDULUM.

310. The duration of an oscillation is independent of its amplitude, provided it does not exceed 4° or 5°.

Note 1.-This fact is commonsy stated by saying that the vibrations of the pendulum aro isochronous; i. e., equal-timed. Thus a pendulum of a given length will orcillate through an arc of B° in the samo timo it would havo required to vilurato through an arc of 0.1^{2} althougb tho amplitude of the vibration is in tho one caso bo tines as great as in the other. Thisarisos from the fact that the pendulum in moving through tho larger are falls througha greater vertical distance, and heuce acquires a grenter velocity,

Note 2.-Strictly speaking, tho oscillations of the pendulum are iso. enronous only when the curve in which they move is a cycloid. When, howerer, the common pendulum vibrates in very small arcs, as of 20 or 8°, the oscillations are, for all practical purposes, isochronous.
311. The daration of the vibration is independent of the weight of the ball and the nature of its substance.
312. Two pendulums of equal lengths perform an equal number of ribrations in the same period of time.
313. Two pendulums of unequal lengths perform an unequal number of vibrations in the same period of time -the longest pendulum performing the smallest number of oscillations.
314. Pendulums of unequal lengths vibrate in times which are to one another as the square roots of their lengths.
315. A seconds pendulum is one that performs exactly sisty vibrations in a minute, or one vibration in one second.
316. The time occupied by a vibration depends:1 st. Upon the length of the pendulum ; and 2nd. Upon the intensity of the foree of gravity.
Note.-Since the earth is not an exact sphere, being flattened at the poles, the surface of the earth at the poles is nearer to the centre than at the equator. Hence the intensity of the force of gravity is less at the equator than at the poles, and a pendnlum that beats seconds at the equator must be lengthened in order to beat seconds as it is carried towards the poles. In point of fact, a seconds pendulum at the polesis about onefifth of an inch longer than a seconds pendulum at the equator. The following Table shows the length of the seconds pendulum at different parts of the earth'meurface, and also the magnitude of the force of gravity; i.e., the velocity which the force of gravity will impart to a dense body in falling for one entire second.

Place.	Latitude.	Length of Seconds Pendulum.		Velocity acquired by a body falling one second.	
St Thomas	$0{ }^{2} 24^{\prime}$	39.01 i	ches	3849.86 in	ches
Ascension	7-55'	39.02	"	3542-86	،
Jew York	$40^{\circ} 42^{\prime}$	$39 \cdot 10$	"	355-978	*
Paris	$4885{ }^{\prime}$	$39 \cdot 12$	"	$356 \cdot 076$	"
London	$51^{\circ} 31^{\prime}$	$39 \cdot 13$	"	386.174	
Spitzbergen	$79^{\circ} 50^{\prime}$	39.21		386.984	"

Note.-In Canada the seconds nendulum is abeut 39.11 in . in length.

317. The pendulum is applied to three purposes:-

 1st. As a measure of time; 2nd. As a measure of the foree of gravity: and 3rd. As a standard of measure.Note.-The pendulum is used as a measure of time by attaching it to clock-work, which serves the double purpo of remisterlug its oscillations and rostorlng to tho pendulum the motion lost iu its vibration ly friction and atmosplieric resistance. The use of the pendulum as a standard of measure will be seen from the following statements, viz.:

1st. A pound pressure means that amount of pressure which is exerted towards the earth, in the latitude of London and at the level of the sea, by the quantity of matter called a pround.

2nd. A pouni of matfer means a quantity equal to that quantity of pure water which, at the temperature of 62 deg. F'ahrenheit, would occupy $27 \cdot 627$ cubicinches.

3rd. A culic inch is that cube whose side, taken $39 \cdot 1393$ times, would measure the effective length of a London seconds pendulum.

4th. A seconds pendulum is that which, by the unassisted and unonposed effect of its own gravity, would mako 86400 vibrations in an artsifial solar day, or $86163^{\circ} 09$ in a natural sidereal day.
318. If $t=$ the time of oscillation, $l=$ the length of the pendulum, $g=$ the force of gravity; i. e., the velocity which the force of gravity would impart to a dense body falling throush one entire second, and $=3.1416 ; i$.e., the ratio between the diameler of a a circle and its circumference.

Then $t=\pi \sqrt{ }\left(\frac{l}{g}\right)(\mathrm{I}) l={ }_{\pi^{2}}^{\frac{\pi}{2}}(\mathrm{II})$ and $g=\frac{l \pi^{2}}{t^{2}}$ (iII.)
When $t=$ one seconl, formulas (II.) and (III.) respectively become $l=\frac{g}{\pi^{2}}$ (Iv .) and $g=l \pi^{2}(\mathrm{v}$.
319. To find the time in which a pendulum of given length will vibrate, or the length of a pendulum that vibrates in a given time:-

Let $l=$ the length and $t=$ the time. Then since (Art. 314) the times are as the square roots of the lengths, and in Canadu the seconels pendulum is $39 \cdot 11$ inches in length-we have

$$
\begin{aligned}
& t: 1:: \sqrt{ } l: \sqrt{ }(39 \cdot 11) ; \text { and hence } \\
& t=\sqrt{ }\left(\frac{l}{39 \cdot 11}\right)(\sqrt{ } \cdot), \text { and } l=t^{2} \times 39 \cdot 11 . \text { (vir.) }
\end{aligned}
$$

320. To find the number of vibrations which a pendulum of given length will lose by decreasing the force of gravity,
i. e., by earrying the pendulum to the top of a mountain or other elevation.

Let $n=$ the number of vibrations performed at the earth's surface in the given time, $n^{\prime}=$ the number of ribrations lost in the same time, $r=$ the radius of the earth,$=4000$ miles, and $h=$ the height of the mountain in miles or fraction of a mile; then
$n^{\prime}=\frac{n h}{r}(\mathrm{vII})$, and lence $h=\frac{n^{\prime} r}{n}$ (Ix.$)$
321. To find the number of vibrations which a pendulum of given length will gain in a given time by shortening the pendulum.

Let $l=$ the given length of the pendulum, and $l^{\prime}=$ the decrease in length; also let $r=$ the number of ribrations performed in the given time, and $n^{\prime}=$ the number of vibrations gained in the same time; then

$$
n^{\prime}=\frac{n^{\prime} l}{2 l}(\mathrm{x} .) \text { and } l^{\prime}=\frac{2 n^{\prime} l}{n}(\mathrm{xI} .)
$$

Example 382.-How many vibrations will a pendulum 36 inches long made in one minute?

Formula VI: $t=\sqrt{ }\binom{l}{-39 \cdot \overline{11}}=\sqrt{\text { SOLUTION. }}\left(\frac{36}{39 \cdot 11}\right)=\sqrt{\cdot 9204}=\cdot 9 \% 9$ seconds.
Hence the number of vibrations $=60 \div-959=62.55$.
Example 333.-Required the length of a pendulum that makes 80 vibrations in a minute.

SOLUTION.

Here $t=\frac{60}{80}=3$
Then formula viI. $t=t 2 \times 39 \cdot 11=\left(\frac{3}{3}\right)^{2} \times 39 \cdot 11={ }_{16}^{9} \times 39 \cdot 11=$ 21 - 999 inches.
Example 384. In what time will a pendulum 60 inches long vibrate?

> soletion

Formula VI. ; $t=\sqrt{ }\left(\frac{1}{35 \cdot 11}\right)=\sqrt{ }\binom{60}{39 \cdot 11}=\sqrt{1 \cdot 5341}=1 \cdot 239$ seconds.

Ans.

Example. 335. -A pendulum which beats seconds is taken to the top of a mountain one mile high : how many seconds will it lose in 6 hours?

BOLCTION.

Here $n=6 \times 60 \times 60, \pi=1$, and $r=4000$.
Then formula (VIII.): $n^{\prime}=\frac{n h}{r}=\frac{6 \times 60 \times 60 \times 1}{4000}=\frac{21600}{4000^{-}}=5.4$. Ans.
Example 386.-If a clock lose 1 minute in 24 hours, how much must the pendulum be shortened to make it keep true time?

SOLUTION.

Mere $n=24): 60 \times 60, n^{\prime}=69$, and $l=39 \cdot 11$.
Then formula XI. : $l^{\prime}=\frac{2 n^{\prime} l}{n}=\frac{2 \times 60 \because 39 \cdot 11}{24 \div 60 \% 60}=0.0543$ or about $1^{\prime} 8^{-1}$ th of an inch. Ans.

Example 387.-Through what distance will a leavy body fall in Canada during oue entire second, and what will be its terminal velocity?

solution.

Here $t=1$, and $l=39 \cdot 11$.
Then formula V. $g=l \pi^{2}=39 \cdot 11 \times(3 \cdot 1416)^{2}=39 \cdot 11 \times 9.86965056=$ 386.002 inches $=$ terminal velocity.

Hence the space passed through $=\frac{0+386.002}{2}=193.001$ inches $=$ 16.0835 feet. Ans.

Example 388. - What must be the length of a pendulum in order vibrate ten times in a minute?

soletion,

Here $t=\frac{60}{10}=6$ seeonds.
Then formula VII. $l=t^{2} \times 39 \cdot 11=10^{2} \times 39 \cdot 11 \Rightarrow 100 \times 39 \cdot 11=3911 \mathrm{in}$, $=326$ feet nearly. Ans.

Example 389.-A pendulum which vibrates seconds at the surface of the earth is taken to the top of the mountain and is there found to lose 18 seconds in a day of 24 hours : required the height of the mountain.

SOLUTION.

Here $n^{\prime}=24=24 \times 60 \times 60^{\prime} n=18$, and $r=4000$.
Then $h=\frac{n^{\prime} r}{n}=\frac{18 \times 4000}{24 \times 60 \times 60}=\frac{5}{0}$ miles $=4400$ feet. Ans.
Example 390. If a seconds pendulum be shortened $1 \frac{1}{4}$ inch, how many vibrations will it make in one minute?

SOLUTION.

Here $n=60, l=39 \cdot 11$, and $l^{\prime}=1 \cdot 25$.
Then formula $X ; n^{\prime}=\frac{n l^{\prime}}{2 l}=\frac{60 \times 1 \cdot 25}{2 \times 39 \cdot 11}=0.958=$ the number of vibrations gained; hence the number of vibrations mado $=60.958$. Ans.
Example 391. What will be the velocity acquired by a heary body falling during one entire second in the latitude of Spitzbergen?

SOLUTION.
Here $t=1$, and by the table Art. 316, $\iota=39 \cdot 21$.
'then $g=l \pi^{2}=39 \cdot 21 \times(3 \cdot 14162=39 \cdot 21 \times 9 \cdot 86905=386 \cdot 988$ inches. Ans.

EXERCISE.

392. What must be the length of a pendulum in the latitude of Canada in order that it shall vibrate once in 3 seconds? Ans. $351 \cdot 997$ inches.
393. A pendulum that vibrates seconds at the surface of the earth is carried to the summit of a mountain 3 miles in height: how many seconds will it lose in 24 hours?

Ans. 64-8.
394. In what time will a pendnlum 10 inches in length vibrate?

$$
\text { Ans. } \cdot 505 \text { seconds. }
$$

395. What velocity will a heary body falling in the latitude of New York acquire in one entire second ? Ans. $385 \cdot 903$.
396. If a clock lose 10 minutes in 24 hours, how much must the pendulum be shortened in order that it shall keep correct time? Ans. 543 or over $\frac{1}{2}$ of an inch.
397. If a seconds pendulum be shortened 5 inches, how many vibrations will it make in a minute? Ans. 63.83,
398. A pendulum which vibrates seconds at the surface of the earth is carried to the summit of a mountain, where it is observed to lose 30 seconds in 24 hours : required the height of the mountain. Ans. $7333 \cdot 3$ feet.
399. In what time will a peadulum 100 inches long vibrate?

Ans. $1 \cdot 59$ seconds.
q()). Required the length of a pendulum which makes 120 vibrations per minute?

Ans 9.77 inches.
401. Through how many feet will a body fall in one second, and what will be its terminal velocity at the end of that portion of time in the latitade of Paris?

$$
\text { Ans. Terminal velocity }=386 \cdot 1 \mathrm{in} .
$$

Space passed over $=16.0875 \mathrm{ft}$.

CHAPTER VIII.

II Y D IODYNAJICS.

322. Hydrodynamics treats of the motions of liguids and of the forees which they exert upon the bodies when their action is applied.
323. The particles of a fluid on escaping from an orifico possess the same velocity as if they had fallen frecly in vacuo from a beight equal to that of the fluid surface abovo the centre of the orifice. This is known as Torricelli's theorem.
324. The principal deductions from the Torricellian theorem are-

1st. The velocity of an eseaping fluid depends upon the depth of the orifice bencath the surface and is independent of the density of the liquid.

2nd. The velocity of efflux from an orifice is as the square root of the height of the fluid surface above the centre of the orifice.

Note.-Since all bodies falling in vacuo from the same helght aequire the sume velocity, density has no effect in increasiuy the velocity of a lignid escaping from an orifice in the slde or in the bottom of a vessel. Thus water, alcohol, and wercury, will all flow with the mame rapidity: for thongh the pressure of the mereury is $18 \frac{1}{2}$ timess greater than that of water, it has $13 \frac{1}{2}$ times as much matter to move.
325. When a liquid flows from an orifice in a vessel which is not replenished but the level of which continually deseends, the velocity of the escaping liquid is uniformly retarded, being as the decreasing series of odd numbers 9 , $7,5,3$, \&c., so that an unreplenished reservoir empties itself through a given aperture in twice the time the same quantity of water would have required to flow through the same aperture had the level been maintained coustantly at the same point.
326. The quantity of fluid discharged from a given aperture in a given time is found by multiplying the area of the aperture by the velocity of the escaping liquid.

Note.-Experiments do not ngree with this theory as regards the quantity of liquid discharged. The wholo subject has been carelully investigated by lossut, and he has shown that

Actual discherye: Theoretical discharge $\cdot:$ fa : 1 or as is:8.

Hence the theoretical discharge must be multiplied by $\frac{5}{8}$ to obtain the true quantity.
This discrepancy arises from the fact that the escaping jet dimmishes in diameter just after leaving the vessel, f rmin f what is known as the evena contract or contracted vein. The mimum diameter of the vein is found at a distance abont equal to half the diameter of the aperture at $c c^{\prime} \mathrm{P}_{\mathrm{ig}} .27$. This effeet arises from the fact that just abuve the orifice the lateral particles of fluid nuove as well as the desceuding portions.

Fig. 27.

If the jet of liqnid be thrown upwards at an angle of from 25° to 45° the vein retains the diameter of the aperture, but if thrown at an angle greater than 45° its section increases.
327. Let $Q=$ the quantity discharged in 1 second, $a=$ area of aperture, $h=$ height of fluid level above the centre of the orifice, $g=$ accelerating force of gravity, and $v=$ velocity.

Then Art. $266 v=\sqrt{2 g h}$, (I) $Q=a \sqrt{2 g h,}$ (II) $a=\frac{Q}{\sqrt{2 g h}}$, (III) and $h=\frac{Q^{2}}{2 g u^{2}} . \quad$ (iv.)

Note.-Since $g=32,2 g=61$, and $\sqrt{2 g}=8$, formulas I, II and III become respectively $v=\delta \sqrt{ } h, Q=\delta a \sqrt{ } h$, and $a=\frac{Q}{8 \sqrt{h}}$.
328. An adjutage is a short tube, either cylindrieal or conical, placed in an orifice to increase the flow. If the vein passes through the tube without wetting the interior walls, the flow is not modificd, but if the liquid adhere, i. e., wet the walls, the vena contracta is dilated and the flow increased.
329. A cylindrical adjutage with length not greater than four times its diameter inereases the flow one-third.
330. A conical adjutage, converging towards the exterior, augments the flow more than a eylindrical adjutage -its effect upon the vein varying with the angle of convergence.
331. A conical adjutage diverging towards the exterior is still more efficient and may be such as to render the flow three or four times as great as the actual flow from an orifice of the same diameter in a thiu wall and 1.5 times greater than the theoretical flow.
332. As the velocity of a liquid escaping through an orifice is the same as it would have acquired in filling freely in vacuo through a space equal to the distance of the orifice below the level of the liquid, it follows that a jet of water spouting upwards should rise to the level of the liquid in the rescrvoir. In prac-it tice, however, the spouting jet never reaches this height owing to certain disturbing forees, namely:-

1st. Friction in the conducting tube in part destroys the velocity.
2nd. Atmospherie resistance.
3rd. The returning water falls upon that which is rising and thus tends to stop its ascent.
Note.-Tho height to which the liquid spouts is incrensed by:
1st. Having the orifice very small in comparison with the conducting tube.
2nd. Plercing the orifico in a very thin wall; and
3rd. Inclining the jet a littlo so as to avoid tho returning water.
Example 402.-With what velocity does water issue from a small aperture at the bottom of a vessel filled to the height of 100 feet?

SOLUTION.
Formula $1 v=8 \sqrt{ } h=8 \sqrt{ } 100=8 \times 10=80$ feet per second. Ans.
Example 403.-What quantity of water will be discharged in one minute from an aperturo of half an inch in area-the height of the water in the vessel being kept constant at 10 feet above the centre of the orifice?

solution.

Here $a=\frac{1}{2}$ square inch $=\frac{1}{2 \frac{1}{8}}$ of a aquare foot,
The cubic feet discharged in 1 second $=8 a \sqrt{ } h$.
Cubic feet discharged in 1 minute $=60 \times 8 a \times \sqrt{h}=60 \times{ }_{2}^{8} \% \times \sqrt{10}$ $=60 \times \frac{1}{3} 5 \times 3 \cdot 162=5 \cdot 27$ cubic fect $=$ tho theoretical quantity, and $5 \cdot 27 \times$ $l=8 \cdot 29$ cubic feet $=$ truo quantity.

Example 404. - What must be the area of an orifice in the side of a vessel in order that 40 cubic feet of water may issuc per hour-the water in the reservoir being kept constantly at the level of 20 feet above the centre of the aperture?
sOLUTION.

Here $Q=\bar{\sigma}_{6}^{40} \times 60=\frac{3}{3}$, of a cubic foot, and since this is only $\frac{5}{5}$ of the
theoretical quantity, $Q=\frac{8}{6}$ of $\frac{1}{90}=2 \frac{1}{2} 5$ of a cabic foot. Also $h=20$
Then formula III, $a=\frac{Q}{8 \sqrt{h}}=\frac{\bar{z} \frac{5}{6}}{8 \sqrt{20}}=\frac{\frac{\overline{2} \pi}{25 \cdot 76}}{35 \cdot 76}=\frac{5}{100 \overline{\delta 2}}$ of a foot 16.9 of an inch. Ans.

Example 405.-An apright vessel 16 feet deep is filled with water, and just contains 15 cubic feet. Now, if a small aperture $\frac{1}{4}$ of an inch in area be made in the bottom, in wiat time will the vessel empty itself?

BOLETTION.

Here $h=16 \mathrm{ft} ., a=\frac{1}{4}$ of an inch, and $Q=15$ cubic feet.
Heuce the theoreticalquantity $=15 \times \frac{8}{6}=2 \frac{1}{x}$ cubic feet.
Then velocity at commencement $=8 \sqrt{ } h^{2}=8 \sqrt{16}=32 \mathrm{ft}$.
Quantity discharged in one second $=32 \times{ }_{5} \frac{1}{7} 6={ }_{5} \frac{32}{7} 6=\frac{1}{18}$ of a cubic foot.
Time required to discharge 24 cubic feet $=24 \div \frac{18}{18}=432$ seconds.
But, Art. 324, when a ressel empties itself, the time required to discharge a given quantity of wateris double that requisite for discharging the same quantity when the lerel is masatained.

Hence time $=432 \times 2=864$ seconds $=16 \cdot 4$ minutes. Ans.

EXERCISE.

406. With what velocity does water issue from a small aperture in the side of a vessel filled to the height of 25 feet above the centre of the orifice? Ans. 40 feet per second.
407. With what velocity does water flow from a small aperture in the side of a vessel-filled with water to the height of 17 feet above the centre of the orifice?

Ans. $32 \cdot 984$ feet per second.
408. In the last example, if the water flows into a vacuum, what is its velocit5?

Ans. 56 feet per second.
Note.-Since the pressure of the atmosphere is equal to that of a column of water 32 feet high, the effective height of the column of water is $17+32=49$ feet.
409. How mach water is discharged per minute from an apertare having an area of $\frac{1}{6}$ of an iach-ihe surface of the fluid being kept constant at 36 feet? Ans. $2 \frac{1}{2}$ cubic feet.
410. What must be the ares of the aperture in the bottom of a vessel in order that 90 cubic feet of water may issue per hour-the level of the water in the vessel being constantly kept at 20 feet above the centre of the orifice? Ans. 161 or about $\frac{4}{25}$ of an inch.
411. A vessel contains 20 cubic feet of water, which fills it to the depth of 30 feet-now, if an aperture having an area of ${ }_{8}^{7}$ of an inch be made in the bottom of the vessel, in what ime will it empty itself? Ans. 2 min. $30 \frac{1}{2} \mathrm{sec}$.
333. When water spouts from several apertures in the side of a vessel, it is thrown with the greatest random from the orifice uearest the centre, the jet issuing from the centre will reach a horizontal distance equal to the entire height of the liquid, and all jets equally distant from the centre will be thrown to an equal horizontal distance.

Fig. 29.
Note,...Tet $V A$ be a vessel fil ed with water, having its sido $A B$ perpendicular to tha horizontal phano $B M$. On $A B$ describe tho semicircle BDA. Bisect $A B$ inc'and in $A B$ take any points D and D^{\prime} equally distaut from E, also C and $C^{\prime \prime}$ equally distunt from E. Draw also CC, D) 1), EE, \&c., p(erpendicular to $A B$ and produce to the circumference $A B C$. Then if small orilices be pierced in the side of the vessel at $C^{\prime}, D^{\prime}, E^{\prime}, D^{\prime}$, and C, the liquid from E will spous to twice $E E^{\prime}=A B=13 M i$ the liquid from C or $C^{\prime \prime}$ will
 spout to $H=$ twice $C C$ or $C^{\prime} C^{\prime \prime}$ and that from D or D will reack $K=$ twice $D D$ or $D^{\prime} D^{\prime}$.
334. The horizontal distance to which the liquid spouts ander these circumstances may be found as follows:

Let $H=$ height of water above horizontal plane, $d=$ perpendicular let fall to the orifice from the circumference $A E^{\prime} B$, and $h=$ height of orifice above the horizontal plane. Theu (Euclid iii. 35)

$$
d^{3}=h(H-h) \text { and hence } d=\sqrt{h(H-h)}
$$

Thus if the Reservoir in Fig. 29 be 20 feet in height and bo filled with water, and the apertures C, E, and D be respectively 4,10 and 15 feet above the plane $B M$; then the segments of $A B$ are respectively 4 and 16,10 and 10 , and 15 and 5 feet, and the randoms will be respectively $2 \times \sqrt{4 \times 1} 6,2 \times \sqrt{10 \times 10}$ and $2 \times \sqrt{15} \times 5$, i. e. $2 \times \sqrt{64}$ or $16 \mathrm{ft} .2 \times \sqrt{100}$ or 20 ft . and $2 \times \sqrt{ } 75$ or 17.32 ft .
335. When water flows in any bed, as in the e'rannel of a river or in a pipe, the velocity becomes constant when the length of the bed bears a large proportion to its sectional area. Thus, in pipes of more than 100 feet in length, or in rivers whose course is unopposed by natural obstacles, the velocity of the body of the stream is tho same through. out. When this occurs the liquid is said to be in train.
336. The velocity of the liquid flowing in a pipe or channel is not the same in every part of its section, bring greatest in the centre of the section of the pipe or in the middle of the surface of the stream.

Note 1.-This arises from the friction exerted against the fluid Ky the interior suifacc or the pipe or the bauks of the stream. In a strean, on account of the middle part having the greatest velocity, the surise e is always more or less convex.

Note 2.-The velocity of a stream may be determined in three different ways:-
1st. An open tube bent at right angles is placed in a stream with one of its legs opposed to tho current and the other branch rertical-the velocity of the stream is measured by the height to which the water rises in the vertical leg.
2ud. A fluat is thrown into the stream and the time occupied by it in passing over a known cistance olserved.
3rd. The convexity of the surface may be measured by a levelling instrument, aud its velocity thus determined.
337. To find the velocity of efflux, and hence the quantity of water discharged in a given time from a reservoir of given height through a pipe of given length und diameter:-

Let $d=$ diameter of pipe, $l=$ length, $h=$ height, and $v=v e l o c i t y$. Then all the dimensions being in feet, $v=48 \sqrt{ }\left\{\frac{h d}{l+54 d}\right\}$
Note.-This is the formula of M. Poncelet, and is regarded as strictly accurato.

WATER WHEELS.

338. Water is frequently made to drive machinery by its weight or momentum exerted on a verical water-wheel.
339. There are three varieties of vertical water-wheels, riz. : the undershot, the overshot, and the breast wheel.

Fig. 30.

BREAST WHEEL.

Fig. 31.

URDERSMOT WHEEL.

Fig. 32.

OVERSHOT WHEEL.

Note. - Tho mode in which the water is made to act on these is represented in Figs. 30, 31, 32. It will be observed that the undershot wheel is moved by the momentum of tho water-the breast wheel and overshot wheel by its welght aided by its momentum. An overshot wheel will produce twice the effect of an undershot wheel,- the dimensions, fall, and quanuty of water being the same. Tho breast wheel is found to consume wice the quantity of water required by an overshot wheel to do the same work.
340. In all water-wheely the greatest mechanical effect is produced when the velocity of the water is $2 \frac{1}{2}$ times that of the wheel.
341. To find the horse power of a vertical water-whecl:-

Let $b=b r c a d t h$ of stream in feet, $d=$ depth of stream, $v=m e a n$ velocity in feet of stream per minute, $h=$ height of fall, $s=$ weight of one cubic foot of water, and $m=$ modulus of the wheel.

$$
\text { Then horse power }=\frac{m b d v s h}{33 \overline{0} 00}
$$

Example 412.-A water wheel is worked by a stream 6 feet wide and 3 feet deep, the velocity of the water is 22 feet per minute, and the height of the fall 30 feet, required the Lorse power of the wheel, the modulus being $\cdot 7$.
solution.

$$
\text { H. } P .=\frac{m b d v s h}{33 \omega 0}=\frac{6 \times 3 \times 22 \times 30 \times 62.5 \times 7}{33000}=15 . \% \mathrm{~A} . \mathrm{Ans} .
$$

Example 413.-W Wat is the horse power of Ω water wheel worked by Ω stream 2 feet deep, 7 feet wide, and having a velocity of 33 feet per minute-the fall being 10 feet and modulus of the wheel ${ }^{\circ} \mathrm{C}$?

GOLUTION.

$$
\text { II. } P .=\frac{m i d v: s h}{0300}=\frac{.6 \times 7 \times 2 \times 33 \times 625 \times 10}{33000}=4.25 . \text { Ans. }
$$

Example 414.-A water reservoir is 100 feet in height, supplies water to a city by a pipe 10000 feet in length and 6 inches in diameter, what is the velocity per second and what quantity will be discharged in 24 hours?
solution.
Here $h=100, l=10000$, and $d=\frac{1}{2}$.
Then Art. $330, v=48 V\left\{\begin{array}{c}h d \\ l+54 d\end{array}\right\}=48 V\left\{\begin{array}{c}100 \times \frac{1}{2} \\ 10000+54 \times \frac{1}{2}\end{array}\right\}=48 \sqrt{\frac{50}{10027}}$ $=3.36$ feet per second $=$ velocity.

Quantity discharged in 1 second $=3.1416 \times\left(\frac{1}{4}\right)^{2} \times 3.36$.
Quantity discharged in 24 hours $=3.1416 \times \frac{1}{16} \times 3.36 \times 60 \times 60 \times 24=$ $5: 001 \cdot 1904$ cubic feet. Ans.

EXERCISE.

415. A water-wheel is worked by a stream 4 feet wide and 3 feet deep, the velocity of the water is 29 feet per minute, the fall 20 feet; required the horse power of the wheel, its modulus being 56 ?

Ans. $7 \cdot 38$
416. A water wheel is worked by a stream 2 feet deep and 4 feet wide, and having a velocity of 50 feet per minute, the fall is 33 feet and the modulus 84 , how many cubic feet of water per hour will this wheel raise from the depth of 44 feet?

Ans. 15120.
417. A water-wheel is worked by a stream 4 feet wide and 3 feet deep, the velocity of the water being 15 feet per minute, and the fall 27 feet, how many gallons of water per hour will this wheel raise to a height of 80 feet, the modulus being 8 ? Ans. 18225 gallons.
418. A water reservoir 80 feet in height supplies water to a city through a pipe 1742 feet in length and 4 inches in diameter, what is the velocity of the water per second, and how many gallons will it deliver in 10 hours ?

Ans. $115925 \cdot 04$ gallons.
342. The Turbine is a horizontal water-wheel having a vertical axle. It revolves entirely submerged, and is of all varieties of water-wheels the most economical and powerful. It was invented by M. Fourneyron in 1827, but has since been much musified in form and greatly improved. The water enters at the centre of the wheel, descends in its vertical axis and is delivered by a great number of curved guides so as to strike the buckets in a direction nearly tangential to the circumference of the
whecl. The buckets are also curved in the direction required to give the machine the greatest possible amount of efficiency. The water having expended its force cscapes from the wheel in a direction corresponding very nearly with the radii.
343. Turbine wheels may be divided into high pressure and low pressure machines.
344. High pressure turbines are such as are worked by a high fall of water, and are adapted to hilly countries and deep mines, where the height of the fall may be made to compensate for the smallness of the volume of water.
345. Low pressure turbines are employed where a large stream of water possesses but little fall; they are said to produce powerful effects with a head of water of but nine inches.
346. Λ committee of investigation appointed by the French Academy of Sciences, and consisting of Arago, Prony, and others, gave the following report on these wheels :-
I. Turbines are equally applicable to high or low falls of water.
II. Their effective work is from 70 to 78 per cent. of the work applied. (Turbines, made by Boyden of Boston, have given 88 per cent. of the work applied.)
III. They wrork without much loss of power at relocities both above and below that required to produce the maximum effect.
IV. They will work without appreciable loss at a depth of from 4 to 6 feet beneath the surface of water.

[^11]
CHAPTER IX:
 THEORY OF UNDULATIONS.

347. All undulations or waves have their origin in vibratory or oseillatory movements imparted to the molecules of the solid, liquid, or gaseous body in which the undulations occur.
348. Undulations are of two kinds, 1st. Progressive undulations.
2nd. Stationary undulations.
349. Progressive undulations are such as are produced by the vibratory movement passing from the particles first affected to those next them, and the oscillatioa being thus communicated successively from particle to particle, the wave adrances with a progressive movement.

As familiar illustrations of this k nd of undulatory morement, we may meation the wares prosuced on water by the wind, or by casting a stone on its surface, and those produced in a cord made fast at one end, by smartly shaking the other end up and down. I: the later case, a wavelike movement is observed to pass from the hand to the fast end of the zord, and then a simelar wave returns to the hand.

Note,-It must be carefuily remembered that althongh the ware advances, the particles by whose vibration it is produced have themselves no progressive motion, but a mere oscillatory movement up and down like that of a peudulum. Thus in the casc of the cord, the particles of matter that c ;mpuse thocori do not themse:res recede from the hand and advance to it. And that there is no progressive forward movement in the particles of water pr aducing water-waves sisevideuced by the fact, that a flost placed on the surface of the water simply rises aud falls with the wave but does not muve forward with it.
350.-Stationary undulations are such as are produced when all the particles of a body are made to assame and to complete these vibrations at the same times.

Thus when a cord or a wiro is stretched betreen two fixed points, and is made to vibrate by drawing it at the mildle from its rectilinear position, it recovers its normal condition after performing a series of undulationy in which all the particles of the cord or wire take part.
351. In every undula- F ig. 33. tion certain parts are to be distinguished as follows :The curve $a d b e c$, is called an undulation wave.

The part $a d b$, is the phase of elevation.

The part $b e c$, is the phase of drpression.

The distance $a c$ is the length of the wave.
The distance $d g$, is its height.
The distance $f e$, is its depth.
Trice $d g$, or $f e$, is its amplitude.
352. The vibration of solid bodies may be conreniently considered under the heads of cords, rods, planes, and masses. Stretched strings, wires or other linear Fig. 34. solids, are suseeptible of three kinds of vibration, viz:

1st. Transverse vibrations.
2nd. Longitudinal vibrations. 3rd. Torsional vibrations.

Thus if a cord be secured at one end and beld stretched by a weight attaclied to tho other as in Fig. 34, then
Lst. Upon drawing tho string to one side and suddenly letting it go the vibrations which it makes and which are represented by the dotted llues aro at right angles to the axis of the cord and are called transverse vibrations.

zad. If the ball B be ralsed a little and snddenly dropped, it will continue for some time adrancing and receding from its original position, the cord performing a series of longitudinal vibrations.
3 rd. If tho ball be turned round its'vertical axis several times, and then let go. the cord will for some time continue to twist and unwist, thus perlorming a series of torsional vibrations.
353. In transverse vibrations the time of vilration is the time occupied in passing from a to l, that is, in making one complete movement from side to side.
354. The vibrations of stretched cords, wires, \&e., are always isochronous (See Art. 310), and are governed by t'le four following laws:
I. The tension being the same, the number of ribrations of a cord varies inversely as its length.
II. The tension and length being the same, the number of vibrations in cords of the same material, is inversely as their diameters.
III. The number of vibrations of a stretched cord is proportional to the square root of the force of tension, $i, e .$, the stretching weight.
IV. All other things being equal, the number of vibrations of differcnt cords is inversely proportional to the square root of their densitics.

Thus by the first law, equally stretched cords of the same material vibrate more rapidly in proportion as they are shortened. For example, if several strings of cat-gut be equaliy stretched and their lengths are represented by the numbers $1, \frac{1}{8}, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{1}$, . $-c$., their vibrations in the same space of time will be represented by the numbers $1,2,3,5$, 7.11, \&c.

By the second law, if wo have cords or wires of the same material of equal length and tension, but having a thickness represented by the numbers $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{1}$ \&c., then the number of their vibrations in the same unit of time, will be respectively represented by the numbers $1,2,3,4,5, \& \mathrm{c}$. By the third law, if we hare a cord of wire stretched with a certain degree of force and therefore vibrating with a certain rapidity in order to double, triple, quadruple, \&-c., the rapidity of the vibrations, we shall have to strain the cord to four, nine, sixteen, \&c., times its original tension.
By the fourth law, if we have two cords of the same tension, length and diameter, but one formed of cat-gut having a spec. grav. or density of 1 , and the other formed of copper having a spec. grav. or density of nearly 9 , the former will vibrate about three times as rapidly as the latter.
355. When a stretched cord as $a b$, Fig. 35, is fastened at each extremity and also temporarily fixed at two intermediate points d and c, the segment, $a d, d c$ and $c b$ may be thrown in stationary vibrations of equal amplitude. Upon now loosening the points d and c it will be found that these points remain at rest although the other parts of the cord are in rapid vi-

Fig. 35. bration. These
 dal points(Lat. nodus "a knot,") and occur wherever the phases of eleration and depression in such a vibratory line intersect each other.

Note. - The norlal points of a vibratory line or rod may be experimentally determised by small rings of paper which remain fixed on these points, bnt are thrown off from all others. A stretched line or rod may be thrown into a series of stationary vibrations by drawing a violin bow across it in different places.
356. A rod like a stretched string, may vibrate either transrersely, longitadinally, or torsionally, and is subject in its ribrations to the following laws:
I. The vibrations are isochronous.
II. The transverse vibrations vary in number inversely as the square root of the length of the rod.
III. Longitudinal vibrations vary in number inversely as the lengths of the rods no matter what may be their diameters or the forms of their transverse sections.
IV. Torsional vibrations of rods, of the same material, vary in number directly as their thicleness and inversely as their lengths.
357. An clastic plate may be made to vibrate by fastening it in a vice cither by the corner or by the centre ald drawing a violin-bow across its edge.
358. In a vibrating plate certain lines exist which are always at rest and which are hence called nodal lines. They correspond to the nodal points in strings or rods, and if we regard the plate as being composed of a number of rods then we may consider the nodat lines will be made up of their nodal points.

Fig. 36.

The plate is divided by the nodal lines into internorlal spaces, the ariacent spaces being always in opposite plaza as show' in Fig. 3 ; where the sign + indicates the phase of elevation, and the sign - the phase of depression.
359. The nodal lines vary in number and position acwording to the form of the plate, its size, its elasticity, the rapidity of the vibrations, the mode in which they are produced, the point by which the plate is fixed, \&c. Their position may be determined by scattering sand or colored powder on the plate and vibrating by incan of violinbow, -the sand is thrown off the internodes and arranges itself along the nodal lines forminer the so called nodal figures or acoustic figures.
360. Nodal figures have a great variety in their form but aro generally very symmetrical. Several hundred have been figured. The accompanying illustration rejresente a few of those obtained on square and circular plates.

The plates are supposed to be fastened in a vice at the point a, and the vinlin-bow drawn over tho edge at the point b. In figure III the finger is placed on the edge of the plate at a point 45° from b, in IV at a point 60° or 30° or 90° from b. In V the finger is placed at w.

361. The vibrations of elastis plates are performed according to the following laws:-
I. The number of vibrations is independent of the breudth of the plute.
II. The number of vilrations is proportional to the thickness of the plate.
III. The thickness being the same, the number of vibrations varies inversely as the square of its length.
Note. -The plate is supposed to be, in each case, composed of the same substance.

UNDULATIONS LN LIQUIDS.

362. Undulations in a liquid are caused by the vibratory movernent of its molecules in such a manner that each particle describes a vertieal eircle, about the spot in which it may ehance to be, revolving in the direction of the adrancing wave. This rotating movement among the partieles is progressively carried to the contiguous particles, so that different atoms will be describing different parts of their cireular path at the same moment. Thus some will be at the point of bighest elevation, forming the crest of the wave, others at the point of lowest depression forming the trough, and others at intermediate points.

> The diameter of the vertical circle described by a single particle is called the ampitudent the wave, and is, in the case of ocean waves, oflen as much as 20 feet. It has been ascertained by experiment that a linuid is not disturbed by the undiulations on its surface, to a deptl greater than about 175 times the anplitudo of tho wave.
363. Progressive undulations striking against a solid surface are reflected and the angle of reflection is always equal to the angle of incidence. it follows from this law that:-
1st. If the wave be linear, i. c., if its crest is at the right angles to its course aud it meets a plane surface pe:pendicularly it will be reflected back in the same path, and if it meet the plane surface at an angle of $80^{\circ}, 40^{\circ}, 30^{\circ}$, \&e., it will be reflected on the other side of the perpendicular at the same angle.
2nd. The rays of a wave originating in one focus of an elliptieal vessel are all reflected to the other focus.
3 rd . The rays of a ware propagated in the focus of a parabola are all reflected in parallel lines.
4th. A line or wave impinging on a parabola has all its rays refleeted to the focus of the parabola.
5 th. If two parabolas face each other with their axes coincident, a system of cireular waves originating in one focus will be followed by a corresponding system having the other focus for their centre.
6 th. When the rays of a eircular wave impinge at right angles upon a plane surface they are reflected so as to form a circular wave having the same degree of curvature but in the opposite direction.
364. When two systems of waves originating in different centres nieet, they either combine or interfere and their interference may be either complete or partial.
I. When two waves meet in the same phase, i. e., so that their elevations and depressions coincide, they combine and form a new wave having an amplitude equal to the sum of the amplitudes of the combining waves.
II. If the two waves of equal amplitude meet in opposite phases, i. e., so that the depression of the one
coincides with the elevation of the .nther they interfere, both waves disappear, and the liquid surface becomes perfectly horizontal.
III. If two waves of unequal amplitude meet in opposite phases they partially interfere, and the resulting ware has au amplitude equal only to the difference between the amplitude of the meeting waves.

UNDULATIONS IN ELASTIC FLUUIDS.

365. All elastic fluids, such as atmospheric aiŕ, are subject to surfuce undulations such as occur in liquids; and there surface undulations are governed by the same laws.
366. When an elastic fluid is compressed, and the compressing force is suddenly removed, the fluid expands beyond its normal dimensions, it then contracts, a second time expands, and thus coutinues, for some tinc, to oscillate alternately on each side of its original volume. The pulsations or waves which are thus engendered in elastic fluids differ from the surface waves produced in the same fluid, and also from the waves that are peculiar to water and other non-elastic fluids in the following particulars:

1st. Aërial waves or undulations consist in the alternate rarefaction and condensation of the air or other gas, and are hence called waves of rarefaction and waves of condensation; and
2nd. Aërial waves are always spherical in form.
367. Aërial waves are influenced with respect to interference and combination by the same general laws as govern the surface wave of liquids (See Art. 364), but we must bear in mind that the term rarefaction corresponds to phase of eleration, and condensation to phase of depression.

CHAPTER X.
 ACOUSTICS.

368. Acoustics (Greek "Akou0"" "to hear,") treats of sounds, their cause, production and nature, and the laws by which they are governed.
369. Sounds are sensations arising from impressions made upon the auditory nerve by waves or undulations in the surrounding medium.
370. All bodies producing sound are in a state of more or less rapid vibration ; and these vibrations, impinging upon the atmosphere or other elastic medium, produce in it a series of undulations of condensation and rarefaction.
The vibrations of a stretchod cord producing sound may be perceived by
placing the tiager on it; the vibrations of a sonorous plate by scatter-
ing sand upon it, \&c.
371. The intensity of the sound produced by a vibrating sonorous body depends chiefly upon two circum-stances:-

> 1st. The density of the surrounding medium, and 2nd. The rapidity of the vibration of the sonorous body.
372. Sound is not propagated at all in a vacuum, and the sound produced in atmospheric air by a vibrating sonorous body is much more intense than that produced in hydrogen and other gases of less density than air. On the other hand, solid bodies, vapors, water and other liquids of greater density than air, transmit sound with increased energy.

Sounds are not only much louder but can be heard to a much greater distance in water and solids than in air. Thus if the ear be applied to one end of a long beam of wood and the least tapping noise or even the scratch of a pin be applied to the other-the sound is distinctly percoived by the ear. The report of cannon is said to have been distinctly heard to the distance of 250 miles by applying the ear to the solid earth. If the ear be placed under the surface of water, and two pebbles be knocked together, the sound conveyed to the oar is very loud, and it is said that if a cannon be fired close to a body of water in whilel a person has his head immersed, the report is sufficient to destroy his sense of hearing.
373. All sounds travel, in the same medium, with the same velocity, whatever may be their pitch or their strength.

Were it not for this property of sound-the notes produced by the musical instruments of an orchestra would be discordant, except to those in the immediate neighbourhood of the performers.

Note.-1t has lately been satisfactorily shown that in tho care of sounds differing very widely in lutensity this is not strictly true,-very intense sounds travel rather more rapidly than others.
374. The veloeity of sound in atmospheric air varies: 1 st. With the temperature, decreasing about $11^{1} \frac{\mathrm{ft}}{\mathrm{ft}}$. per
second, for every degree Fahr. the temperature is lowered.
2nd. With the velocity and direction of the wind.
Note.-The intensity of a sound as heard at a distance is much modified, but its velocity is not affected by the condition of the air as to its being clear or foggy, the barometric pressuro great or small, the sky clear or cloudy.
375. Aceurate experiments have determined the velocity of sound in atmospheric air at a temperature of 60° F., to be 1118 feet per second.
376. The velocity of sound in vapors and gases at $32^{\circ} \mathrm{F}$., has been determined from calculation by Dulong to be as follows:

Carbonic acid	860	per	con
Alcohol vapor,	862		"
Oxygen, 1040	"	"
Olefiant gas,	1030	"	"
Air,	1092	"	"
Carbonic oxide,	1105	"	"
Water vapor, ..	1347	"	"
Hydrogen,..	. 4163	"	"

377. The following table gives the results of experiments made upon the velocity of sounds in liquids and solids:

In Water, sound travels at rate of	4708	feet per second.				
T'in,	"	"	"	8385	"	"
Cast Iron,	"	"	"	11609	"	"
Copper,	"	"	"	13416	"	"
Wood,	"	"	"	16770	"	"

Note. -That is, in water sound travels $4 \frac{1}{2}$ times as fast as in air ; in wood about 15 times, and in metals from 7 to 12 times as fast.
378. The distance to which sound may be propagated depends upon the following circumstances:
I. The greater the intensity of the sound the greater the distance to which it will travel.
II. The denser the air or other conducting medium the greater the distance to which the sound will travel.
III. In atmospheric air the distance to which the sound will travel is much influenced by the condition of the air as regards winds, \&c.
379. It has been experimentally ascertained that the following sounds may, under ordinary circumstances, be heard at the annexed distanecs:

The human voice in the open air, 700 ft . The marching of a company of soldiers at night,.. 2500 ft . The marching of a company or squadron of cavalry, 3000 ft .
The report of a musket, 3000 ft .
Note. - Lieut. Foster conversed with a man, in frosty weather, across the harbor of Fort llowesh, a distance of $1 \frac{1}{4}$ miles. Dr Young states that the wateleword "All's well" has been heard from Old to New Gibraltar, a distance of 10 miles. The canuonading of a sea fight between the Einglish aud Dutch in $16 \overline{6}_{2}$ was heard at Slirewsbury, a distance of 200 miles.
The camonading at the siege of Antwerp in 1832 was heard in the mines of Saxony, a distance of 320 miles.
The noise prodnced by the volcanic eruption in Tomboro in Sumbawa was heard at a distance of 900 miles.
380. When two series of sonorous undulations encounter each other in opposite phases of vibration, they interfere, and if the sound produced by each separately are equal, the interference will be complete, they will destroy each other and produce silence.
381. The phenomenon of interference of sonorous waves so as to produce silence may be conveniently shown in the following manner :

Take two tuning forks of the same note, fasten to one prong of each a small dise of card board laalt an inch in diameter, and mako one fork rather heavier than the other by loading it with a little sealing wax at the end. Also take a glass jar about ten inches in height and two inches in diameter. Then make one of the torks vibrate, and holding it just above the mouth of the glass vessel as seen at d, Fig. 38, carefully pour in water till the air in the jar vibrates in unison with the fork, aud the result will be the production of a prolonged unfform and clear sound without stop or cessation. When cither fork is made to vibrate and is beld alone over the jar, we obtain a uniform sound, but when both are made to vibrate and
 are at the same time held over the month of the jar there arise a series of sounds alternating with a series of silences, this alternation continning as long as the forks are vibrating.
The explanation is simply that the long waves arising from one fork overtake the shorter waves produced by the other, and alteruately interfert and combino with them.
The destruction of sonorous waves by interference may also be observed by holding a vibrating tuning fork about a foot trom the earand gradually turning it round. Wheu the prongs are equally distant from the ear a note is heard, but when one is more distant than the other partial or complete interference takes place, and the sound dies out in part or altugether.
382. Sound waves are reflected upon striking any solid
or liquid surface according to the laws cnumerated in Art. 363.
Note.-A certain portion of the sound enters the second medium and uudergoes refraction.
383. An echo is a sound reflected by a surface sufficiently distant to allow a short space of time to intervene between the direct and the reflected sounds in order that these may not be confounded.
384. The ear cannot distinguish one sound from an-other unless there be an interval between the two at least one-ninth of a second. In one ninth of a second sound travels 124 feet $(1118 \div 9)$ so that a perfect echo cannot exist unless there be at least 62 feet (half of 124) between the ear and the reflecting surface.
If a sentence be repeated in a loud voice at the distance of 62 feet from a reflecting wall the last syllable will be distinctly echoed; if at the distance of 124 ft . the last two syllables ; if at the distance of 186 ft . [62×3] the last three syllables, \&c.

If the reflecting wall is at a less distance than 62 ft . from the speaker, reflected sounds blend with the emitted so as to prolong and strengthen them. This is expressed by the term resonance. Hangings, draperies, carpets, \&c., about a room tend to smother or stifle the sound, as they are bad reflectors. A crowded audience has a similar affect-increasing the difficulty of speaking by presenting non-reflecting surfaces.

If a person stands 1118 feet from a reflecting enrface and articulates loudly at the rate of four syllables per second, the echo will repeat the last pight syllables clearly; becanse the sound will require two sounds to travel to the reflecting surface and back to the ear, and in two seconds he gives utterance to eight syllables.
385. Repeating or multiplying echoes are those that repeat the same sound several times. Such echoes commonly occur where parallel walls or other obstacles are placed opposite each other at a sufficient distance apart to reflect the sonorous undulations alternately from side to side.

In a multiplying echo each repetition is less loud because the reflected wave is always more feeble than the direct ware, so that intensity is lost by each reflection until the sonorous undulations become iucapable of conveying any impression to the ear.
386. Remarkable Echoes.-There is an echo at Verchères between two towers that repeats a word thirteen times.

At Adermach in Bohemia there is an echo which repeats seven syllables three times distinetly.

At Lurleyfels on the Rhine there is an echo which repeats seventeen times.

At Belvidere, Alleghany County, N. Y., there is an echo between two barns which repeats distiuctly a word of one, two or three syllables eleven times.

At Woodstock in England there is an echo which repeats seventeen times during the day and twenty times during the night.
In the Villa Simonetta near Milan, there is an echo which repeats a sharp sound thirty times.
The celebrated ancient echo of Metelli at Rome is reputed to have bren capable of repeating the first line of the Aneid contalning fifteen syllables eight times distinetly.
387. Whispering galleries are so called because a whisper uttered at one point may be distinetly heard in some other remote locality although quite inaudible in all other positions. They are generally domed or are of an ellipsoidal form-the point of utterance and the focus of refiestion being the two foei of the ellipse (compare Art. 363).
The most remarkable whispering gallerles in tho world are tho following:

The gallery beneath the dome of St. Paul's Cathedral in London.
The Gothic vault of the Cathedral at Gloucester.
A Church at Girgenti in Sicily in which a whisper near the door is distinctly heard at the remote end of tho chureh 200 feet distant.
The Grotto di Favella, at Syracuso [supposed to be the celebrated Ear of Dionysius.]

The dome of the rotunda of the Capitol at Washington, \&c.
388. The speaking trumpet is an instrument designed to enable the human voice to be heard to a great distance. Its efficacy is due to the fact that the confined column of air is made to vibrate in unison with the voice, and hence the pulsations that impinge upon the exterior air, have a greater energy and give rise to sonorous waves of greater intensity.

It has been satisfactorily shown by llassenfratz that tho old explauation by reflection of the rays of sound is inadmissible. This is proved by the lact that the power of the instrument is not impaired by lining its interior with linen, a very bad reflector, or by making the trumpet in the form of a cylinder provided with a bell-shaped extremity. The shape of the extrenity exerts an unexplained infinence upon the action of the instrument. The sound emitted through the trumpet is increased in all directions, i. e., not merely in the quarter to which it is pointed.
389. The ear trumpet is designed to enable partially deaf people to distinguish sounds more distinctly. It acts upon the principle that the portion of the sonorous wave that enters the large end of the instrument imparts its energy to portions of air swaller and smaller and conscquently eauses it to vibrate or pulsate with more intensity as it approaches the ear.

We have an illustration of something of tho samo kind of concentration when we attacha weight to a string and cause it to wind rapldy round the finger; the revolutions become more rapid as the string shortens.

It was formerly customary to explain the action of the ear trumpet upon the principle of reflection of the rays or waves of sound. Thls explanation is disproved by the fact that so long as the extremity remote from the ear is much larger than that applied to that organ, it makes but little or no difference what may be the shape of the trumpet. It likewise makes 110 difference whether the interior surface is rough or polished.

CHAPTER XI.

MECHANICAL THEORY OF MUSIC.

390. Noise is the effect of a series of sonorous undulations produced by unequal or irregular vibrations.
The report of a gun, the crack of a whip, the rumble of a train of cars, or of a carriage on a stone road, \&c., are familiar examples of noises.
391. Musical sounds are the result of sonorous waves produced by equal or regular vibrations.
392. Every sound has three distinct qualities distinguishable by the ear, viz.:
I. The pitch or tone.
II. The intensity.
III. The quality or timbre.
393. The tone or pitch of a sound is high or low, and depends upon the rapidity of the vibratory movement producing the sonorous undulation. The more rapid the vibrations are, the higher will be the pitch of the note.
394. The intensity or loudness of the sound depends upon the amplitude of the vibrations which produce the sonorous wave, or what amounts to the same thing, upon the degree of condensation produced in the middle of the sonorous undulation.
Note.-A sound may maintain the same pitch, i. e., the same length of wave, and yet vary in inteusity.
395. The quality or timbre of a sound is that property or peculiarity which enables us to distinguish it from all other sounds of the same pitch and intensity.
Thus if a flute, a piano, a violin, and a clarionet, all sound a note of the same pitch and with the same intensity, wo can readily distinguish the sound produced by each.
396. Sounds produced by the same number of vibrations per second, are said to be in unison.
397. A melody is a succession of single musical sounds which bear to each other such simple relations as are readily perceived by the ear, and which consequently produce an agreeable impression.
398. A chord consists of two or more melodious sounds produced simultaneously.
399. A harmonized passage consists of a succession of chords following one another in melodious order.

To a cultivated car a ring of bells is musical or noisy according as its tones are musical or unmusical intervals; it is harmonious or discordant according as the intervals areconcords or dissonances; it will bo " cheerful" or "8ad " aceording as the iutervals producing the concordances aro major or minor.
400. The instruments used for determining the number of vibrations performed by a sonorous body giving a tone of definite pitch, are the Sirene and Scavart's tonthed wheel.

The essential parts of the sirene are a brass tube about 4 inches in diameter, terminating in a smooth brass plate which has about twenty small holes plerced obliquely near its circumference. A second thick plate having the same number of equidistant holes but picreed obliquely in the reverse direction, is supported just above the tirst plate in such a manuer as to revolve with extreme case. At the upper extremity of the vertical axis which bears the second plate, there is an endless serew, which acts upon a counter, like that on a gas meter. The lower part of the tube bearing the first plate, terminates in an air chamber which is kept filled with uniformly compressed air by a double acting bellows. When a current of air arrives from the bellows it parses through the holes in the first plate, and in escaping through the second plate imparts to the latter a rotary motion. As the upper plate revolves the avenues of escape for the compressed air are rapidly cut off and renewed, and consequently wheu the plate revolves regularly and with sufficient rapidity, sonorous undulations are produced in the exterior air by the minute puffs of wind that escapo at uniform intervals through the plates-the sound increasing in acuteness as the velocity of the revolving disc becomes greater. The rapidity of the revolution is governed by the degree of pressure to which the air in the chamber is subjented.
Savart's toothed wheel consists of a large wheel connected by means of an endless band with the axis of a smaller toothed wheel, tho cogs of which are made to touch in succession a small tongue or slip of metal, thus causing it to vibrate. The number of revolutions made by the toothed wheel is recorded by an attached system of clock-work; and the number of vibrations made by the tongue is found of course by simply multiplying the number of revolutions by the number of teeth in the wheel. It is perhaps, unnecessary to remark that the more rapid the revolution of the wheel the more rapid is the vibration of tho tongue, and consequently the higher the pitch of tho note produced. Fach tooth causes the tongur to make two movements, i. e., one down and the other up, each of these is called a single vibration, and the two together a double vibration.

Both the Sirene and Savart's toothed wheel act upon the recognised principle that two sounds are in unison when they are produced by the same number of vibrations per second. The instrument is made to revolve more or less rapifly till it is brought in unison with the sound exporimented on when the rate of vibration is at once obtained from the dul lace.
401. The Monochord or Sonometer is an instrument used to study the transverse vibrations of cords, and hence the relation that subsists as regards number of vibrations, \&c., between the several notes of the musical scale.

Fig. 39.

The monochord consists of a thin wooden case SS'above which a metallic wire or a cord of catgut FTF' is stretched over the pulley M by the weight P. A moveable bridge $\mathbf{H H}^{\prime}$ can be placed at any desired point between the fixed bridges F^{\prime} and F^{\prime}. The weight P is commonly adjusted so that the string or wire when vibrating its whole length shall give the note C.
402. If the whole length of cord vibrating produces the note C , it is found by experiment that when $\frac{8}{9}$ of its length vibrate, the note D is produced; $\frac{4}{5}$ of its length vibrating give the note E, \&c. ; and since (Art.) the number of vibrations varies inversely as the length of the string, these fractions iuverted give the number of vibrations necessary to produce the notes D, E, \&c., as compared with C. The following table gives the relative lengths of cord producing the notes of the common diatonic scale, and the relative numbers of vibrations per second belonging to them.

403. It is common to indicate the different scales in use by means of indices attached to the various notes. Thus the fundamental C which corresponds to the highest sound of the base, is represented by C^{1}, the successive higher octaves by $\mathrm{C}^{2}, \mathrm{C}^{3}, \mathrm{C}^{4}$, d.c., and the successive lower octaves by $\mathrm{C}^{-1}, \mathrm{C}^{-2}, \mathrm{C}^{-3}$.
404. The absolute number of vibrations corresponding to any given note can easily be determined by setting the Sirene or Savart's wheel in unison with it. It has been thus ascertained that the fundamental C is produced by 128 simple vibrations per second, and by multiplyivg this successively by $\frac{8}{3}, \frac{5}{4}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}$, \&c., we obtain the number of vibrations for the other notes as given in the following table:-

$$
\begin{array}{lllllllll}
\text { Notes } & \text { C } & \text { D } & \text { E } & \text { F } & \text { G } & \text { A } & \text { B } & \text { C }
\end{array}
$$ Absolate number of simple vibrations per second.

$$
128,144,160,170_{3}^{2}, 192,213 \frac{1}{3}, 240,256
$$

405. The number of vibrations corresponding to the several notes of any superior gamut, is found by multiplying the above numbers by $2,4,8,8 c$., and for the inferior gamut by dividing by $2,4,8$, \&c.
Thus A ${ }^{3}=213 \frac{1}{3} \times 4=853 \frac{1}{2}$ simplo vibrations $\left.=426\right\}$ complete vibrations.

Note.-There is a slight difference in the actual number of vibrations producing a particular note as performed in different cities. Thus the number of vibrations required to produce $\boldsymbol{\Lambda}^{3}$ varies as follows:-
Theoretlcal number. 426%
Orekestra of Berlin Opera. 43%
Opera Comique, Paris.............. 427.
Academie de la musique, Paris..... 431 .
Italian Opera, (1855). 449 .

The General Musical Congress which met in London In the year 1860 to consider the propriety of adopting a uniform musleal pitch, fixed upon the number 528 complete vibrations for $\mathrm{C}^{3}, 440$ for A^{3}.
The commission recently appointed in France have recommended $\mathrm{C}^{3}=$ $522 ;=\mathbf{A}^{3}=435$. In the report submitted by this committee the following pitches were discussed:-

Handel's Tuning Fork (c. 1740)....... A at $416=\mathrm{C}$ at 499\}.
Theoretical liteh...................... A at $4262{ }_{3}^{2}=\mathrm{C}$ at 512 .
Philharmonic Soclety (1812-42)....... A at $433=C$ at 518.
Diapason Normal (${ }^{\prime}$ 'aris, 1859)........ A at $435=$ C at 522^{2}.

- Stuttgard Congress (1834).............. A at $440=$ C at 528 .

Italian Opera, London, (1859). A at $455=$ C at 546.
Pianofortes for privato purposes are usually taned somewhat below concert pitch, so that A^{3} is produced by about 420 complete vibrations yer second.
400. The length of a sonorous vibration is found by dividing 1120 feet, the velocity of sound per second, by the number of vibrations made per second, in order to pro-
duce the note. The following table gives the wave-length of the C of different scales :-
Simple Vibrations

per second. | Wave-lengths |
| :---: |
| in feet. |

407. Interval indicates how much one sound is higher than another in pitch, and is of course greater or less as the difference in the number of vibrations, producing the two sounds, is greater or less.
408. Musical intervals are named thirds, fourths, fifths, \&c., from the position of the higher note counting upwards from the lower, according to the following table, in which the first line gives the name of the note; the second line, the number of its vibrations, as compared with the first note ; the third line, the name of the interval; and the fourth line, the interval obtained by dividing each note by that which precedes it.

Note.-The second line of this table must be interpreted thus:-In order to produce the second note $\mathrm{D}, 9$ vibrations mnst be made in the same time required by 8 vibrations giving the first note \mathbf{C}; in order to obtain the third note $\mathbb{E}, 5$ vibrations must be in time required by 4 of the first note C and so on; or, taking 24 the least common denominators of the fractions, while the vibrations producing the first note C number 24, those required to produce the successive following notes will be $27,30,32$, $35,40,45,43,60,72,80,90$, and 96 .
409. In examining the foregoing table tro points must be carefully noted.
I. There are but three different intervals betrreen the successive notes of the scale, viz., $\frac{9}{8}, \frac{1}{8} \frac{n}{2}$ and $\frac{1}{1} \frac{6}{5}$.
II. These intervals occur in the same order in each successive octave.

The interval $\frac{9}{9}$, being the largest interval found in the scale, is called a major tone; $\frac{10}{9}$ is called a minor tone, and $\frac{1}{1} \frac{6}{5}$ is called a semitone, although it is greater than onchalf of either a major or a minor tone.
Note.-The interval $\frac{f}{6}$ is frequently spoken of as a diatonic semitone; the difference between a major tone and tho diatonic semitone, i. e., $\frac{y}{x}-\frac{1}{18}=\frac{7}{18}$, is called a chromatic semitone; the difference between a minor tone and the diatonic semitone, i. $e_{0}, \frac{10}{0}-18=\frac{2}{4}$, is called a grave chromatic semitone; the difference between a major tone and a minor tore, i. e., $\frac{y}{8}-\frac{10}{y}=\frac{1}{7}$, is called a comma.
410. The following table exhibits all the intervals that occur in comparing the notes of the common scale two and two:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathrm{C} . . \mathrm{D}=\mathrm{F} \ldots \mathrm{G}=\mathrm{A} . . \mathrm{B} \\
\mathrm{D} . . \mathrm{E}=\mathrm{G} \ldots \mathrm{~A}
\end{array} \quad=\frac{9}{9}\right. \text {, a major tone. } \\
& \left\{\mathrm{D} \cdot \cdot \mathrm{E}=\mathrm{G} \ldots \mathrm{~A} \quad=\frac{10}{9}, \mathrm{a} \text { minor tone }=1\right\} \text { of } \frac{9}{8} \text {. } \\
& \text { E..F=B..C }=1 \% \text { diatonic semitone }=\frac{2}{2} \frac{5}{5} \text { of } \\
& 10 \text { or } \frac{2}{2} \text { a of } \$ 9 \text { of } \frac{9}{6} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { D..F } \quad=\frac{8 \%}{8 \%} \text { of a minor third }=\frac{8 \%}{8} \text { of }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\mathrm{A}_{2} . \mathrm{D}^{\prime} \quad=\frac{2,}{2 \pi}, \text { a sharp fourth }=\frac{81}{81} \text { of } 3 .\right. \\
& \text { F..B } \quad=\frac{15}{32}=+\frac{3}{2} \text { of a perfect fourth, } \\
& =\frac{3}{24} \text { of } \frac{8}{8} \frac{1}{8} \text { of } \frac{1}{3} \text {. } \\
& \left\{\mathrm{C} . \mathrm{G}=\mathrm{E} . . \mathrm{B}=\mathrm{F} . . \mathrm{C}^{\prime}=\mathrm{G} . . \mathrm{D}^{\prime}\right. \\
& =A . . E^{\prime}=\frac{3}{z}, \text { a perfect fifth. } \\
& \text { D..A } \quad=\frac{10}{4}=\frac{8}{8} f \text { of a perfect fifth. } \\
& \text { B..F = }= \\
& \left\{\mathrm{C} . . \mathrm{A}=\mathrm{D} . . \mathrm{B}=\mathrm{F} . . \mathrm{D}^{\prime}=\mathrm{G} . . \mathrm{F}=\frac{b}{3}, \mathrm{a}\right. \text { perfect sixth. } \\
& \left\{\mathrm{A} . \mathrm{F}^{\prime}=\mathrm{B} \cdot . \mathrm{G}^{\prime} \quad=\frac{8}{8}, \mathrm{a} \text { minor fifth }=\frac{2}{2} \frac{3}{5} \text { of } \frac{5}{3} .\right. \\
& \text { F.. } D^{\prime} \quad=\frac{31}{32} \text {, an inharmonious intervil. } \\
& \mathrm{C} . \cdot \mathrm{B}=\mathrm{F} . . \mathrm{E}^{\prime} \quad=15, \pi \text { seventh, an iuharmu- } \\
& \text { nious interval. } \\
& \text { D. . } \mathrm{C}^{\prime}=\mathrm{G} . \mathrm{F}^{\prime}=\mathrm{B} . . \mathrm{A}^{\prime} \quad={ }_{9}^{26} \text {, a flattened serenth, more } \\
& \text { harmonious than the per- } \\
& \text { fect seventh. } \\
& \begin{array}{l}
\mathrm{F} . . \mathrm{D}^{\prime}=\mathrm{A} . \mathrm{G}^{\prime} \quad=\mathrm{s}, \mathrm{a} \text { minor seventh }=\frac{2}{2} \% \text { of } 15 \\
\mathrm{C} . . \mathrm{C}^{\prime}
\end{array}
\end{aligned}
$$

411. Compound chords consist of three or four notes whose vibrations have a simple numerical relation to one another, and which taken torgether two and two, produce harmony.

The Perfect Major Accord consists of the three notes C, E and G , whose vibrations are to each other as the numbers 4,5 , and 6 , and which compared together two and two give the relations $\frac{5}{4}, \frac{6}{5}$ and $\frac{6}{4}$. The Perfect Minor Accord consists of the three notes E, G and B , whose vibrations are as the numbers 10,12 and 15 , and which give the relations $\frac{6}{5}, \frac{5}{4}$ and $\frac{3}{2}$.
Note. - The intervals of the perfect minor differ from those of the perfect major accord only in their order.
412. Any tone whatever in the common scale or any pitch whatever, may be adopted as the basis of another similar scale, provided means be employed to preserve the same relative intervals between the successive notes. When a piece of music is thus changed from one scale into another it is said to be transposed, and the process is called the transposition of scales.
413. In the transposition of scales it is found necessary to introduce additional notes, in order to maintain the relative intervals between the successive notes. Such additional notes are called sharps ($(\mathbb{\#})$ and flats (\vdash) according as the tone corresponding to any given note is raiscd or lowered.
414. When these new notes are interpolated in every full tone (major or minor) of the diatonic scale, the result is a series of twelve intervals in the octave, forming what is known as the chromatic scale.
415. Temperament is an artifice by means of which the introduction of an inconveniently large number of additional notes into the scale is prevented. In the transformation of scales it is assumed that every note may be raised or lowered by a diatonic semitone $\frac{15}{1} \frac{5}{5}$, but in order actually to raise and lower each tone by that amount, we would require a very great number of new notes. To prevent this such notes as $\mathrm{C}_{\overline{\mathrm{E}}}$ and $\mathrm{D}_{\boldsymbol{y}}$ are regarded as identical, though in reality they differ from one another slightly, and are played differently on stringed instruments, as the harp and riolin, by skilful players. For practieal purposes musical instruments such as pianos, organs, \&c., are tuned so as to divide the octave into 12 equal inter-
vals called chromatic semitones of equal temperament. It follows from this that all musical intervals except octaves, as played on instruments, differ more or less from absolute purity ; thus in the following table it will be seen that the minor semitone and the major thirds are all too sharp, and the major semitones, the minor thirds and the fiftle, are all too flat.

	True value.	Value in equal temperament.
Minor semito	$\left.\begin{array}{l}\text { ze } \\ \text { 俍 } \\ =1.042 \\ 1.067\end{array}\right\}$	$\overline{2}=1.060$
Minor third.	$\frac{0_{0}^{\prime}}{5}=1 \cdot 200$	$\sqrt{2^{3}}=1.189$
Major third...	${ }_{5}=1.250$	$12_{12}^{2^{4}}=1 \cdot 260$
Fifth	$\frac{2}{3}=1 \cdot 500$	$\sqrt{1 / 7}=1 \cdot 498$

Another mode of explaining what is meant by temperature is the following:-

While the key note makes one vibration, the major third must make 5 vibrations, the major third of this note must make $\frac{5}{4}$ of $\frac{5}{4}=\frac{25}{18}$ vibrations, and the major third of this last note $\frac{5}{4}$ of $\frac{5}{4}$ of $\frac{5}{4}=\frac{13}{6} \frac{5}{6}$. This last note does not accord perfectly with the true octave which is 2 or $\frac{128}{87^{8}}$. If then we keep the octave pure we caunot retain the purity of the thirds, and the same oceurs with respect to the fifths. In order therefore, to retain the octaves pure we have to raise or lower the thirds and fifths somewhat above or below their normal tone. This balanciug or suffering the note to float somewhat over or under its proper tone is called tempering.

The subject of temperament is a very extensive one, and the student is directed for its full investigation to any of the standard works on music.

Note.- If the car were more sensitive than it is, it would be so unpleasantly affected by the impurity of the thirds and fifths, as almost to proclude any enjoyment from musical performances.
416. When two sounds not in unison, are produced at the same time, alternation of strength and feebleness are perceived. These alternations follow each other at regular intervals, and are called leats. The nearer the vibrations agree in rapidity, the longer is the interval between the beats; when the unison is perfect no beat occurs; and
when the ribrations differ widely in rapidity they produce inerely an unpleasant rattle.
417. The tuning fork or diapason is a two pronged steel fork of peculiar form, by means of which we can produce an invariable note. It is commonly formed to give A^{3}, corresponding to 428 vibrations per second, but may be made so as to give any other note of the gamut. It is much used as a standard in tuning instruments, or striking the key note in vocal music, $\&$ e.
Nore.-The note given by the diapason is mach strengthened by mounting it on a box of thin wood open at one end.

MUSICAL INSTRUMENTS.

418. Musical instruments may be for the most part divided into-
I. Wind instruments.
II. Stringed instruments.
III. Instruments of which the essential part is a stretched membrane.
419. Wind instruments are sounded either by an embouchure like the flute, organ, pipe, flageolet, \&c., or by reeds as in the Jew's-harp, clarionet, melodeon, horns, trumpets, trombones, \&c.
420. Stringed instruments are all compound - the sounds produced by the vibrating string being strengthened by elastic plates of wood or metal and inclosed portions of air to which the cords transmit their own vibrations. Stringed instruments are played-
I. By a bow as in the violin.
II. By percussion as in the piano, or
III. By twanging as in the harp.
421. The third class of musical instruments includes drums, tambourines, \&c. Drums are of three kinds,-the small drum or common regimental drum, which is a brass cylinder having both heads covered with membrane but beaten only at one end ; the base or double drum which is much larger, and which is beaten at both heads; and the kettle drum which is a hemispherical copper vessel supported on a tripod, and having its head covered with vellum.

The kettle drum has an opening in the metallic ease to equalise the vibrations.
422. In all wind instruments the sounds are produced by throwing the column of air contained in tubes into vibration. The pitch of the sound produced depends upon:-

1 st. The length of the tube containing the air.
2nd. The position and dimensions of the embouchure.
3rd. The inanner of imparting the primary motion to the air.

The difference of quality belonging to the notes given by pipes of different materials is due most likely to a feeble vibration of the sides of the tube.
423. Sonorous vibrations are produced in tubes-
I. By blowing obliquely into the open end of the tube as in the Pandean pipe.
II. By casting a current of air into an embouchure near the elosed end of the tube as in mouth pipes.
III. By thin laminæ of metal or wood placed at the end of the tube and which vibrate as the current of air sweeps past. These laminæ are called reeds.
IV. By the lips acting as reeds.
V. By a small burning jet of hydrogen gas.
424. The laws that govern the vibration of air in tubes were investigated by Bernoulli in 1782. He divides all tubes into two classes.

1st. T'ubes having the extremity opposite the mouth closed.

2nd. Tubes open at both extremities.
For tubes with the end remote from the mouth closed he gives the following laws :-
I. The same tube may produce different sounds and in this case the number of vibrations will be to each other as the odd numbers 1, 3, 5, 7, 9, \&c.
II. In tubes of unequal length sounds of the same order correspond to the number of vibrations and these are in inverse ratio to the length of the tube.
III. The column of air vibrating in a tube is divided
into equal parts which vibrate separately and in unisonthe open orifice being always in the middle of a vibrating part, and the length of a vibrating part equal to the length of a ware corresponding to the sound produced.

For tubes open at both ends the foregoing laws prevail, with the following modifications :
I. The sounds produced are represented by the natural numbers $1,2,3,4,5,6,7$, sce:
II. The fundamental sound of a tube open at both extremities is always the aeute octave of the same sound in a tube closed at one extremity.
III. The extremities of the tube are in the middle of a vibrating part.

CHAPTER XII.

the organs of voice and hearing.

```
the organs of volce.
```

425. Many animals have the power of producing sounds, and as a general rule those that are endowed with a roice have also the organ of hearing well developed. Man alone, however, possesses the gift of speech, i. e., the power of giving to the tones be utters a variety of definite articulate sounds.
426. The rocal apparatus of man consists of the following parts:-
I. The Thorax, which, by means of the intercostal muscles and the diaphragm, acts as a bellows in producing a current of air for the production of sounds.
II. The Windpipe, which is a long tube carrying the air from the lungs to the organs more immediately concerned in forming the voice.
III. The Larynx (Adam's apple), which is the musical organ of the roiee, and corresponds to the mouth-piece of a musieal instrument.
IV. The Pharynx-a large funnel-shaped cavity at the top of the largns or at the back of the mouth, which,
by varring in form and tension, modifies the tones of the voice.
V. The mouth and nasal passages, which correspond to the upper part of an organ tube, and throw the vibrations into the air.
427. The larynx is composed of the hyoid bone, and its attached cartilages, viz., the two thyroid, which form the sides and front of the larynx, and which constitute the prominenee known as the pomum Adami-the cricoid, which is ring-shaped, and rests upon the top of the trachea, and the two arytenoid, at the back of the larynx and between the two thyroid cartilages. The arytenoid cartilages are movable to a small extent by means of several museles attached to them.
428. The Corde vocales, or vocal cords, are two liganents, of clastic fibrous substance, which extend from the arytenoid cartilages behind to the thyroid cartilages in front. The ligaments meet in front, but are somewhat separated behind; so that when at rest they form an opening in the interior of the laryux shaped like a V ; but by the drawing together of the arytenoid cartilages, the open end may be closed in such a manner that the two vocal cords shall touch one another along their entire length, and the aperture be completely closed. The opening between the voeal cords is called the rimu gloltidis, or tissure of the glottis.
429. The membraue which lines the interior of the larynx doubles so as to form a second pair of folds just above the vocal eords. The spaee between these is much wider than that between the rocal cords, and is covered during the act of deglutition by a valve-like flap ealled the epiglollis. The space between the upper and lower pair of ligaments is called the glottis, or the ventricles of the larynic.
430. Execpt during the production of voeal sounds the arytenoid cartilages are wide apart, and the rocal cords wrinkled and plicated; but while the organs of roice are in aetion, the rima gloltidis is so narrowed that the
sides, rather than the edges of the vocal cords, are in contact, and while the ligaments are thus in contact, the air passing throught the larynx sets them in vibration, somewhat like the reed of a clarionet or the tongue of a trumpet, and the result is the production of a sound. The pitch of the sound depends of course ou the rapidity of the vibration, and this is gorerned by the length and the degree of tension of the vocal cords. The vocal cords are tightened or relaxed by means of the muscles that act on the thyroid and arytenoid cartilages.

Nore.-Sume physiologists regard the return of the glottis in producing sound as analogous to that of a bird call.
431. One of the most remarkable circumstances in connection with the organs of voice and their action is the perfect precision with which the will can determine the degree of tension of these ligaments. Their average length while in repose is in the adult male about $\frac{73}{10} 0$ of an inch, and in the adult female $\frac{51}{100}$; and when stretched to their utmost capacity their length is only $\frac{93}{100}$ in the male, and $\frac{63}{100}$ in the female. The extreme difference of length is therefore about $\frac{1}{5}$ of an inch in the male, and about $\frac{1}{8}$ of an inch in the female. The average compass of the cultivated voice is about two octaves or 24 semitones, and as a practiced singer can produce at least 10 distinct intervals within each semitone, the range of the roice may be said to be 240 notes. Each of these 240 notes corresponds to a different degree of tension of the rocal cords; and as the utmost limits of tension are $\frac{1}{5}$ of an inch in the male and $\frac{1}{2}$ of an inch in the female, it follows that in man the difference in length of the rocal cords required to pass from one interval to another will not be more than $\overline{1} \frac{1}{2} \overline{0} 0$ of an inch, and in woman not more than $\frac{\overline{2}}{\boldsymbol{\sigma}} \frac{1}{0} \overline{0}$ of an iuch.
Note.-It is said that the celebrated vocalist Madame Mara was able to sound 100 different notes within each interval or the diatonic scale, and as the compass of her voice was 20 tones, the whole number of notes she could sound was 2000 , all of course comprised within the extreme variation of $\frac{1}{3}$ of an inch. It may hence be said that she was capable of determining with precision the contraction of the vocal cords to the $\frac{-1}{6} \frac{1}{0} \overline{0} \frac{0}{0}$ of auinch.
432. The larynx is about the same size, aud consequently the vocal cords are about the same length in both sexes up to the age of 14 or 15 years; however from that
tine it rapidly inereases in size in the male, but remains stationary in the fomale. It is owing to this greater length of the vocal cords that the pitch of a man's voice is lower than that of a woman, or of a girl, or of a boy.
433. The difference of timbre or quality in different voices, appears to be chielly due to the difference of flexibility and smoothness in the cartilages of the larynx. Women and children have these cartilages smooth and flexible, and henee their voice is smooth; men, on the contrary, have cartilages which are harder, and sometimes completely ossified, and hence the roughness-the want of tlexibility of their voices.
434. The loudness of the voice depends principally, upon the force with which the air is expelled from the chest, but in part also the resonance produced by the other parts of the larynx and the neighboring cavities.

Note.-In the howling monkeys of South Amerlea there are several hollow pouches which opeu from the tarynx, and one in the hyoid bone (which is greatly enlarged). The voico of this variety of monkey is said to bo louder than the roar of the lion.
435. Voices are divided by musicians into the following classes:-

Double vibrations per second made by vocal cords.

> Female voices, $\left\{\begin{array}{l}\text { Soprano. } \\ \text { Mezzo-Soprano. } \\ \text { Contralto. }\end{array}\right.$
> Male voices, From 1056 to 264.
" 930 " 220 .
$\left\{\begin{array}{llll}\text { Tenor. } & \text { " } & 528 & \text { " } \\ 132 . \\ \text { Baritone. } & \text { " } & 352 & \text { " } \\ \text { Base. } & \text { " } & 220 & \text { " } \\ 82 \frac{1}{2}\end{array}\right.$

Notr, - In epeaking, the range of the voice is limited to about half an octave, in singing, to about two octaves. Occasionally a person may be met with who has cultivated his voice, 80 as to reach through three octaves. The entire rangc of the buman voice, takiug both male and female together, may be said to be about four octaves.
436. Birds have a true larynx which is often very complex, and which is placed at the lower extremity of the trachea, just where it branches into the bronchial tubes. The upper end of the trachea opens into the pharynx bya mere slit. Birds in which the true or lower larynx is absent, are necessarily voiceless. In the cat the upper and lower vocal cords are almost equally developed, and hence the variety and range of its voice. The horse and ass have
only two vocal cords. The sounds produced by insects are caused by percussion or by rubbing the horny sheaths of their wings or legs together, or by the rapid vibrations of their wings or by the contraction and expansion of their air tubes, which forces the air through their orifices so as to make it whistle.

THE ORGANS OF HEARING.

vertical section of the organ of hearing.
437. The organ of hearing in man is composed of three parts, viz. :-
I. The External Ear or Pinna.
II. The Middle Ear or Tympanum.
III. The Internal Ear or Labyrinth :-
438. The External Ear consists of two parts.
I. The Pinna or Pavilion (abc), also called the ala or wing and the auricula.
II. The Meatus Auditorius, or auditor canal (d). Both the pinna and the auditory canal are cartilaginous in structure, but are abundantly supplied with vessels, and hence it is that the ears tingle and redden even with very slight mental emotion. The pinna collects the waves of
sound and directs them inward to the tympanum, through the auditory canal. The preeise purpose served by the numerous prominences and depressions on the pinna is not satisfuctorily known. The auditory canal is about an inch long in the adult, and extends from the pinna to the dyun or tympanum. Its entrance is guided by hairs; and further to prevent the intrusion of insects, there is a very bitter and somewhat fetid wax secreted along its entire length.

Note.-Many animals possess the ability to turn their external ears in ditierent directions, the better to collect the soniferous waves; and it is worlhy of remark, that beasts of prey can turn their ears forward with most facility, while timid animals commonly keep their ears directed backwards so as to guard against the approach of danger from behiud, their eyes serving to keep Ithem warned of what is going on in front.
439. The Niddle Ear or tympenum or tympanic cavity is a somewhat hemispherieal cavity, about half-inch dianeter ; it is placed in the temporal bone, extending from the drum to the vestibule, and is filled with air. The parts of the middle ear are :-
I. The Membrana Tiymprai, or drum of the ear.
II. The Eustachian Tube.
III. The four small bones of the ear.

The membrana tympani is placed obliquely across the inner end of the auditory eanal. It is thin and oval, and is placed at an angle of 45°, its outward plane looking forwards and downwards.

The Eustachian tube is a membranenus canal leading from the middle ear downwards and forwards into the pharynx, with which it communicates by means of a valvular opening that is generally elosed. It gives exit to the mueus whieh forms in the middle ear, and also permits the entratee of air into the tympanic eavity; when closed by a cold, it causes partial deafness.

The ossicles of the tympanum are four sinall bones which conneet the membrana tympani with the fenestra ovalis. They, are shown magnified in the Fig. and are named from their shapes; the mulleus or hammer, m, the ineus or anvil, i,

the os orbiculare or round bone o, (the smallest bone in the body), and the stapes or stirrup, s. The handle \hbar of the malleus is fastened to the membrana tympani, and the base of the stapes to the membrane covering the fenestra ovalis. The bones are joined to one another in the position represented in the figure, and are capable of slight movement by means of attached muscles.
440. The labyrinth or internal ear has its channels excavated in the petreous bone, the hardest of any in the body. It consists of the following parts:-
I. The Vestibule.
II. The semi-circular Canals.
III. The Cochlea.

The vestibule (l) is a chamber formed in the petreous bone. Various branches of the auditory nerve and of arteries pass into it, and it is connected with the tympanic cavity by means of two orifices which are covered with membranes, viz., the fenestra ovalis or oval window (0 , Fig. 42), and the fenestra rotunda or round window (r, Fig. 42).

The semicircular canals (x, y, and z) are three in number, passing from and returning into the vestibule in the upper posterior part. They Pig. s2. are placed at right angles to one another, and are each filled by a membraneous canal of the same shape, coutaining fluid.

The cochlea (snail shell), n Fig. 40 and k Fig. 42, is a spiral eavity, having the exact form of a snail's shell, the convolutions making just two turns and a half around a central pillar. The canal is divided into two passages by a partition (the lamina spiralis), which runs its entire length. These
 passages do not communicate except at the top, where there is a small opening through the partition; at the lower
end (corresponding to the mouth of the snail shell) they terminate separately, one with the tympanic eavity by means of the fenestra rotunda, and the other opens freely into the vestibule.
441. The whole interior of the labyrinth is lined by a delicate membrane, on which the auditory nerve is minutely distributed. Small looped fibrils of this nerve depend from the lamina spiralis, and float in the watery liquid which fills the cochlea as well as the other parts of the labyrinth.
442. The functions of the different parts of the ear are as follows :-
I. The waves of sound are collected in the pinna or external ear, are directed through the auditory canal, and striking upon the membrana tympani throw it into vibration.
II. The chain of small bones connecting the membrana tympani with the membrane that cover the fenestra ovalis reecives the vibrations from the drum or membrana tympani, and transmits them across the tympanic cavity through the fenestra ovalis into the vestibule.
III. The vibrations which are thus excited in the fluid which fills the vestibule, semicircular canals and cochlea, are received by the expanded filaments of the auditory nerve, and the sensation of sound is thus transmitted to the brain.
443. Careful experiments have determined the following principles with regard to the transmission of vibrations from one medium to another, and a due consideration of these will explain the arrangement of membranes, and solids, and fluids in the car.
I. Atmospheric vibrations lose much of their intensity when transmitted directly either to solids or liquids.
II. The intervention of a membrane greatly facilitates the communications of vibrations from air to liquids.
III. Atmospheric vibrations are readily communicated to a solid, if the latter be attached to a membrame so placed that the vibrations of the air aet upon it.
IV. A solid body fixed in an opening by a border membrane so as to be movable, communicates sonorous vibrations from air on one side to water or other similar fluids on the other, much better than solid media not so constructed.
444. The peculiar functions of the semi-circular canals and of the cochlea, are not very well known. As the former are always placed at right angles to each other, occupying the position of the bottom and two sides of a cube, it has been supposed that they enable us to judge of the direction of sound : it is also deemed highly probable by physiologists that the cochlea scrves to give us the idea of the pitch of sounds.
445. According to Savart the most grave note the ear is capable of apprcciating is formed by from seven to eight complete vibrations per second. When fewer vibrations are made per second, they are heard as distinct sounds, i. e., do not produce a note. The most acute note appreciated by the ear is produced by 365000 complete vibrations per second.
Note.-The interval $l a$ is said to be heard by rapidly moving the head from side to side, owing to the motion of the small bones of the ear.
448. The mechanism of hearing is not equally complicated in all classes of animals.

Birds have the internal and middle ear constructed on the same general plan as man, but the external ear is merely a circlet of feathers.

Reptiles have no external ear, and in many cases no middle ear. The fluid in the vestibule is rendered milky in color, owing to the abundance of minute crystals of phosphate of lime.

Fishes have no external or middle ear, but simply a membraneous vestibule situated in the skull, and surrounded by semi-circular canals from one to three in number.

The ear of the mollusk is simply a sack filled with liquid, and having the auditory nerve expanded upon its inner surface.

The position of the organs of hearing in insects is not very well known; but some, as the grasshopper, have the ear no longer in the head but in the legs.

MISCELLANEOUS PROBLEMS.

1. What must be the length of a pendulum in the latitude of Canada in order to vibrate once in 5 seconds?
2. In a lever the arm of the power is 7 feet long and the arm of the weight 2 feet 7 inches; with this instrument what power will sustain a weight of 743 lbs ?
3. In a hydrostatic press the sectional areas of the cylinders are to one another as 1427 is to 3 , and the force pump is worked by means of a lever whose arms are to one another as 27 to 2. Now if a power of 87 lbs . be applied to the extremity of the lever, what upward pressure will be exerted against the piston in the larger cylinder?
4. A cannon ball is fired vertically with an initial velocity of 600 feet per second; it is required to find-
1st. How far it will rise.
2nd. Where it will be at the end of the 7th. second.
3rd. In how many seconds it will again reach the ground.
4th. What will be its terminal velocity.
5 th. In what other moment of its flight it will have the same velocity as at the end of the 5 th secoud of its ascent.
5. A water-wheel is worked by means of Ω stream 4 fect wide and $3 \frac{1}{2}$ feet deep, the water having a velocity of 27 feet per minute and falling from a height of 36 feet, how many strokes per minute will it give to a forge hammer weighing $7000 \mathrm{lbs} .$, -the rertical length of the stroke being 4 feet?
6. In a differential wheel and axle the radii of the axles are $3 \frac{1}{4}$ and 33 inches, and a power of 7 pounds sustaius a weight of 1000 , what is the radius of the whecl?
7. How far may an empty vessel eapable of sustaining a pressure of 159 lbs . to the square inch be sunk in water before breaking?
8. In a screw the pitch is 1^{3} of an inch, the power lever 9 feet 2 inches long and the weight is 44000 lbs., what is the power?
9. How many units of work are expended in raising 70 cubic feet of water to the height of 83 feet?
10. The piston of a low pressure steam engine has an area of 360 inches and makes 13 strokes of 7 feet each per minute, the pressure of the steam on the boiler being 40 lbs . to the square inch. Required the horse power of the engine.
11. Through how many feet will a power of $7 \mathrm{lbs} .$, moving through 120 feet, carry a weight of 29 lbs . ?
12. A train weighing 75 tons is drawn along an inclined plane with a uniform velocity of 40 miles per hour, assuming the inclination of the plane to be $\frac{1}{4}$ in 100, and taking friction and atmospheric resistance as usual, what is the horse power of the engine :-
1st. If the train is ascending the plane?
2 nd . If the train is descending the plane?
13. If a body weighing 7 lbs , at the surface of the earth be carried to a distance of 30,000 miles from the earth, what will be its weight?
14. With what velocity per second will water flow from a small a perture in the side of a vessel, the fluid level being kept constantly 12 feet above the centre of the orifice?
15. In a hydrostatic bellows the tube has a sectional area of $1 \frac{1}{2}$ incles, the area of the board is 37 inches, and the tube is filled with water to the height of 28 feet, what upward pressure is exerted against the board of the bellows?
16. In a differential wheel and axle the radii of the axles are 1_{5}^{3} and $2 \frac{1}{7}$ inches, the radius of the wheel is 40 inches, what power will sustain a weight of $8,700 \mathrm{lbs}$.?
17. A clock is observed to lose 17 minutes in 24 bours, how much must the pendulum be shortened in order that it may keep correct time?
18. At what height will the mercury stand in a barometer at an elevation of 3.5 miles?
19. An upright flood gate of a canal is 17 feet wide and 13 feet deep, the water being on one side only and level with the top; required the pressure :-
1st. On the whole gate.
2nd. On the lowest three-fifths of the gate.
3rd. On the middle three-fifths of the gate.
4th. On the upper four-elevenths of the gate.
5 th. On the lowest five-twelfths of the gate.
20. A piece of stonc weighs 23 oz . in air and only 14.7 oz . in water ; required its specific gravity.
21. Through how many feet will a body fall in 21 seconds down an incline of 7 in 16 ?
22. In a compound lever the arms of the power are $9,7,5$, and 3 feet, the arms of the weight $3,2,1$, and $\frac{1}{2}$ feet, the power is 11 lbs .; required the weight.
23. If mercury and milk are placed together in a bent glass tube or syphon, and if the column of mercury is 7.9 inches in length, what will be the length of the column of milk?
24. In a hydrostatic press the sectional areas of the cylinders are to one another as 1111 to 2, the foree pump is worked by micans of a lever whose arms are to one another as 17 to 2 , and the power applied is 123 lbs . ; what is the upward pressure exerted against the piston in the large cylinder?
25. In a differential screw the pitch of the exterior screw is $\frac{2}{2}$ of an inch, that of the interior screw is γ^{2} of an inch, the lever is 25 inches long and the power applied is 130 lbs ., what is the pressure exerted?
26. A seconds pendulum is observed when carried to the summit of a mountain to lose 3 seconds in an hour; what is the beight of the mountain?
27. Through how many feet will a heavy body fall during the 10th, the 7th and the 6th, seconds of its descent?
28. In what time will an upright vessel 20 feet high and filled with water, empty itself through an aperture, in the bottom, three-fifths of an inch in area, the vessel coutaining 250 gallons?
29. A train weighing 80 tons is drawn along a level plane with a uniform velocity of 20 miles per hour, taking friction and atmospheric resistance as usual, what is the horse power of the locomotive?
30. What is the weight of the milk contained in a rectangular vat 11 feet jong, 7 feet wide, and 3 feet deep?
31. What would be the beight of the mercury in the barometer at an elevation of 29.7 miles?
32. What power will support a weight of 666666 by means of an endless screw having a winch 30 inches long, an axle with a radius of 2 inches, and a wheel with 120 teeth?
33. How much work is required to raise 29 tons of coal from a mine 1120 feet deep?
34. With what velocity does a body move at the close of the 27 th second of its descent?
35. What is the entire pressure exerted upon the body of a fish having a surface of 11 square yards and being at a depth of 140 feet?
36. How much water will be discharged in one bour through an aperture in the side or bottom of a vessel, the water in the vessel being kept at a constant height of 17 feet above the centre of the orifice, and the area of the latter being seven-elevenths of an inch?
37. How many cubic fect of water can a man raise by means of a chain pump from a depth of 120 fect in a day of 8 hours?
38. If a stone be thrown down an incline of 11 in 100 with an initial relocity of 140 feet per second, what will be its velocity at the 10 th second of its descent, and through how many feet will it fall in 21 seconds?
39. At what rate per hour will a train weighing 120 tons be drawn up an incliue of $\frac{1}{3}$ in 100 by an engine of 90 horsepower, taking friction as usual and neglecting atmospheric resistance?
40. A water-wheel is driven by a stream 4 feet wide and 3 feet deep, the fall is 40 feet and the velocity of the stream $38 \frac{1}{2}$ feet per minute-if the modulus of the wheel is 63 , what number of gallons of water will it raise per hour from a depth of 270 feet?
41. In a system of movable pulleys a power of 2 lbs . sastains a weight of 64 lbs .; how many movable pulleys are there?
1st. If the system be worked by one cord?
2 nd. If there are as many cords as movable pulleys?
42. At what rate per hour will a horse draw a load whose gross weight is 1800 lbs . on a road whose coefficient of friction is 泣?
43. In a high pressure engine the piston has an area of 600 inches and makes 30 strokes of 5 feet each per minute; what must be the pressnre of the steam on the boiler in order that the engine may pump 1000 gallons of water per minute from a mine whose depth is 270 feet-making the usual allowance forfriction and the modulus of the pump?
44. The barometer at the summit of a mountain indicates a pressure of 21.73 inches while at the base it indicates a pressure of 29.44 inches, what is the height of the mountain, taking the mean temperature of the two stations as 63•70?
45. If a stone be thrown vertically upwards and again reaches the ground after a lapse of 16 seconds, to what height did it rise?
46. In a composition of levers the arms of the power are 8, 4, 2, and 7 , the arms of the weight are $3,1, \frac{1}{2}$, and 4 : What weight will be sustained by a power of 291 bs .?
47. A piece of wood which weighs 17 oz . has attached to it a metal sinker which weighs $13 \cdot 7 \mathrm{oz}$. in air and $8 \cdot 6 \mathrm{oz}$ in water-the united mass weighs only 5 of an ounce in water; what is the specific gravity of the wood?
48. What must be the area of an aperture in the bottom of a vessel of water 18 feet deep and kept constantly full in order that 27 cubic feet may be discharged per hour?
49. How many tons of coal will be raised per day of ten hours from a mine whose depth is 400 feet, by a low pressure engine in which the piston has an area of 1200 inclies and makes 20 strokes of 6 feet each per minute, the pressure of the steam on the boiler being 45 lbs . to the sq. inch?
50. What power will support a weight of 70000 by means of a screw having a pitch of $\frac{\pi_{2}^{7} 5}{}$ of an inch and a power lever 9 feet two inches in length?
51. In what time will a pendulum 50 inches long vibrate in the latitude of Canada?
52. In a lever whose power arm is $8 \frac{1}{2}$ times as long as the arm of the weight, what power will sustain a weight of 729 lbs.?
53. A train weighing 130 tons is drawn along an incline of $\frac{1}{5}$ in 100 with a uniform velocity of 25 miles per bour; taking friction and atmospheric resistance as usual, what is the horse power of the locomotive :-
1st. If the train is ascending the incline?
2 nd . If the train is descending the incline?
54. A seconds pendulum is observed to lose 40 seconds in 24 hours on the summit of a mountain ; required its height.
55. A body is fired vertically with an initial velocity of 2000 feet per second; it is required to find :
1st. Where it will be at the end of the 120 th second.
2nd. How far it will rise.
3rd. In what space of time it will again reach the ground.
4th. Its terminal velocity.
5 th. In what other moment of its flight its velocity will be the same as at the end of the 49th second.
56. In a wheel and axle the radius of the axle is 3 inches and a weight of 247 lbs . is sustained by a power of 17 lbs ; what is the radius of the wheel?
57. With what velocity does water flow from a small aperture in the side or bottom of a vessel, the fluid level being kept constant at 40 feet above the centre of the orifice?
58. In a train of wheel work there are four wheels and four axles, the first wheel and last axle being plain, i. e., without cogs, and having radii respectively of 12 and 2 feet-the second wheel bas 70, the third 80, and the fourth 100 teeth: the first axle has 8, the second 7, and the third 11 leaves; with this machine what weight will be sustained by a power of 130 lbs ?
59. To what depth may a closed empty glass ressel capable of sustaining a pressure of 200 lbs . to the square inch be sunk in water before it breaks?
60. In a differential wheel and axle the radii of the axles are 1_{5}^{2} and $1 \frac{2}{9}$ inches: a power of 2 lbs. sustains a weight of 749 , what is the radius of the wheel?
61. How many units of work are expended in raising 247 tons of coal from a depth of 478 feet?
62. What is the horse power of an upright water wheel worked by a stream 5 feet wide and $2 \frac{1}{2}$ feet deep, the velocity of the water being 110 feet per minute, the fall 6 feet, and the modulus of the wheel ? ?
63. A train weighing 140 tons ascends a gradient having a rise of $\frac{1}{2}$ in 100 ; taking friction as usual and neglecting atmospheric resistance, what is the maximum speed the train will attain if the horse power of the locomotive be 150 ?
64. A barometer at the summit of a mountain indicates a pressure of 21.4 inches, while at the base the pressure is 30.2 inches, what is the height of the mountain?
65. On an incline of 7 in 100 what power acting parallel to the plane will sustain a weight of 947 lbs .?
66. What centrifugal force is exerted by a ball weighing 40 lbs , revolving in a circle 20 feet in diameter and making 140 revolutions per minute?
67. What is the specific gravity of a piece of metal which weighs 23.49 oz . in air and only $18 \cdot 12 \mathrm{oz}$. in water?
68. If a body be thrown vertically upwards and again reaches the ground in 22 seconds1st. With what velocity was it projected? 2nd. How far did it rise?
69. In a screw the pitch is $1^{\frac{1}{y}}$ of an inch, the power lever is 40 inches long; what power will sustain a weight of 95000 lbs?
70. In what time will an engine of 120 horse power, moving a train whose gross weight is 100 tons, complete a journey of 300 miles, taking friction as usual, neglecting atmospheric resistance, and assuming the rail to ascend regularly $\frac{1}{8}$ in 100 ?
71. An engine of 60 horse power raises 50 tons of coal per hour from the bottom of a mine 200 feet deep, and at the same time causes a forge hammer to make forty lifts per minute of 3 feet each; required the weight of the hammer.
72. In a hydrostatic press the sectional areas of the cylinders are to one another as 1411 to 3 , the force pump is worked by a lever whose arms are to one another as 28 to 3 , the upward pressure required is 9000 lbs ; what must be the nower applied?
73. In a differential screw the pitch of the exterior screw is i^{3} and that of the inner screw ity of an inch, the power lever is 6 feet 8 inches in length; what pressure will be exerted by a power of 19 lbs ?
74. A piece of nickel (spec. grav. 7.816) weighs 24 grains in air and only 16.4 grains in a certain liquid; required the specific gravity of the liquid.
75. In a differential wheel and axle the radii of the axles are $1 \frac{1}{4}$ and $1{ }^{3} \frac{3}{y}$ inches, the radius of the wheel is 42 inches; what weight may le sustained by a power of 23.7 lbs ?
76. What gross load will a borse draw when travelling at the rate of $3 \frac{1}{2}$ miles per hour on a road whose coefficient of friction is $\frac{1}{7} 6$?
77. A body has descended through $a+x$ feet when a second body commences to fall at a point $2 m$ feet beneath it; what distance will the latter body fall before the former passes it?
78. On an incline of $\frac{1}{2}$ in 70 what power acting parallel to the plane will sustain a weight of 4790 lbs .?
79. When a body has fallen 7000 feet down an incline of 7 in 20 what velocity per second has it acquired?
80. A body weighing 100 lbs . and moving from south to north with a velocity of 60 feet per second comes into contact with another body which weighs 430 lbs . and is moving from north to south with a velocity of 20 feet per second, and the two bodies coalesce and move on together ; required the direction and velocity of the motion of the united mass.
81. An engine of 21 horse power pumps 40 cubic feet of water per hour from the bottom of a mine whose depth is 200 feet and at the same time draws coals from the bottom of the mine; required the tons of coals drawn up per hour.
82. In a system of pulleys worked by several cords, each attached by both ends to the pulleys, there are 8 movable pulleys and as many sepárate cords; what weight will be sustained by a power of 73 lbs.?
83. A body weighing 20 lbs . and moving at the rate of 47 feet per second comes in contact with another body weighing 270 lbs. and moring in the same direction with the velocity of 30 feet per second; required the velocity and momentum ot the united mass.
84. In what time will an engine of 150 horse power draw a train whose gross weight is 90 tons through a journey of 220 miles, taking friction as usual, and ueglecting atmospheric resistance, one balf of the journcy to be on a level plane and the other half up an incline of in 100 ?
85. In a common wheel and axle a power of 7 lbs. sustains a weight of 974 ; the radius of the wheel is 51 inches, what is the radius of the axle?
86. At what height would the mercury stand in a barometer placed at an eleration of $43 \cdot 2$ miles above the level of the earth?
87. If a body be projected down an incline of 5 in 12 with an initial velocity of 40 feet per second, through how many feet will it move during the tenth second, and over what space will it have passed in 23 secouds?
88. In a high pressure engine the piston has an area of 360 inches and makes 17 strokes of 5 feet each per minute; taking the pressure of the steam on the boiler as equal to 56 lbs . to the square inch, what are the horse powers of the engine?
89. If a body weighing 111 lbs. moving to the east with a velocity of 90 feet per second come in contact with another body which weighs 70 lbs . and is moring to the west with a velocity of 40 feet per second, and after the two have coalesced they come in contact with a third which weighs 80 lbs . and is moving to the east with a velocity of 20 feet per second, and the three then coalesce and move on together, what will be the direction, velocity, and momentum of the united mass?
90. What must be the length of a pendulum in the latitude of Canada in order that it may make 40 vibrations in 1 minute?
91. What pressure will be exerted upon the body of a man at the depth of 97 feet beneath the surface of the water, the man's body having a surface equal to 14 square feet?
92. A piece of cork which weighs $27 \cdot 42$ grains has attached to it a sinker which weighs $34 \cdot 71$ grains in air and only $30 \cdot 12$ grains in water, the united mass weighs nothing in water, i. e., is of the same specific gravity as water; required the specific gravity of the cork.
93. What is the weight of a mass of slate which contains 27 cubic feet?
94. How many cubic feet of iron are there in 87 tons?
95. What backward pressure is exerted by a horse in going down a hill which has a rise of 3 in 40 with a load whose gross weight is 2100 lbs , assuming friction to be equal to $\frac{1}{3} 0$ of the load?
96. What pressure is exerted against one square yard of an embankment if the upper edge of the yard be 17 feet and the lower edge 18 feet beneath the surface of the water?
97. The length of a wedge is 27 inches, and the thickness of the back $2{ }_{6}^{3}$ inches; what weight may be raised by a pressure of 17 lbs ?
98. What is the effective horse power of a high pressure engine in which the piston has an area of 420 inches, and makes 30 strokes per minute, the boiler evaporating f of a cubic foot of water per minute under a pressure of 60 lhs . to the square inch?
99. A train drawn by a locomotive of 100 JI . P. moves along an incline of $\frac{1}{4} 100$ with a uniform velocity of 25 miles per hour ; taking friction as usual and neglecting atmospheric resistunce, what is the weight of the train:-
1st. If it is ascending the incline ?
2nd. If it is descending the incline?
100. A lightning flash is seen $9 \frac{3}{4}$ seconds before the report is heard, at what distance did the discharge occur?
101. A body 7000 miles from the surface of the earth weighs 500 lbs., what would be its weight at the distance of 4000 miles?
102. How long would sound requite to trarel from Toronto to Markham, a distance of 21 miles, the thermometer indicating a temperature of $82^{\circ} \mathrm{F}$.?
103. At what distance from the source of sound mist the reflecting surface be in order that the last 20 syllables uttered may be distinctly repeated by the echo?
104. On a perfectly calm day the report of a cannon fired on the northern shore of Lake Ontario is beard on the southern shore, a distance of 40 miles. How much sooner will the report arrive at the southern shore through the water of the lnke than through the overlying air?
105. A metallic wire placed on the monochord vibrates 800 times in a second-by how much must its length be increased in order that with the same degree of tension, \&c., it shall vibrate only 550 times in a second?
106. What are the relative numbers of vibrations per second required to produce the notes E and D sliarp?
107. What is the length of a wave of air producing F^{2} of the Italian Opera (1855)?
108. \AA cord of certain length and diameter makes 90 vibrations per second when stretcbed over the sonometer by a weight of 100 lbs ., by what weight must it be stretched in order to make 135 vibrations per second?
109. In the year $1 \% 83$, the report of a metenr was heard at Windsor Castle 10 minutes after the flash of the meteor was seen, what was its distance assuming the temperature of the air to be $52^{\circ} \mathrm{F}$.?
110. An upright vessel is filled with water and is pierced in the side at the heights of $2,5,9$, and 16 feet from the ground, taking the whole height of the water as 24 feet, what in each case will be the random of the jet?
111. A person supposes limself to be in the range of a distant cannon, the report of which he hears 23 seconds after seeing the flash, how soon may be apprehend danger from the ball assuming that it travels with the uniform velocity of $\frac{1}{10}$ of a mile per second?

EXAMINATION PAPERS.

I.

1. A railway train weighing 110 tons is drawn along an incline of $\frac{1}{4}$ in 100 with a uniform velocity of 42 miles per hour, taking friction as usual and atmospheric resistance equal to 20 lbs . when the train is moving at the rate of 7 miles per hour, what is the horse power of the locomotive?
1st. If the train is ascending the gradient?
2 nd . If the train is descending the gradient?
2. Enunciate the principle of virtual velocities and calculate through how many feet a weight of $89 \cdot 7 \mathrm{lbs}$. will be carried by a power of 11.7 lbs . moving through 123 feet?
3. In a different.al wheel and axle the radii of the axles are $3 \frac{1}{7}$ and 3 ? inches : the radius of the wheel is 42 inches, what power will sustain a weight of $444 \cdot 4 \mathrm{lbs}$.?
4. Describe the barometer, and explain the principles on which it acts.
5. What is the weight of a log of boxwood (spec. grav. 1.320) 17 feet long, 1 foot 9 inches wide, and 2 feet 3 inches thick?
6. The upright gate of a canal is 12 feet wide and 16 feet deep, the water being on one side only and level with the top; required the pressure :-
1st. On the whole gate.
2nd. On the lowest five-eighths of the gate ; and,
3rd. On the middle seventh of the gate.
7. Give the composition of atmospheric air, and state what are the chief sources of the carbonic acid.
8. The piston of a high pressure engine has an area of 400 inches, and makes 12 strokes of 6 feet each per minute, the pressure of the steam on the boiler is 64 lbs . per square inch; how many tons of coal per hour will this engine raise from a mine whose depth is 240 feet?
D. Distinguish between the essential and the accessory properties of matter, and enumerate the former.
9. An upright vessel 17 feet in lieight is filled with water and holds just 200 gallons; in what time will it empty itself through an aperture in the botton two-fifths of an inch in area?

HI.

1. A cannon ball is fired vertically with an initial velocity of 800 feet per second ; required-
1st. How far it will ascend.
2nd. In what space of time it will again reach the ground.
3 rd. Where it will be at the end of the 31st secoml.
4 th. Its terminal velocity.
5th. In what other moment of its flight it will hava the same velocity as at the close of the 13 th second.
2. Enumerate the different kinds of attraction, define what is meant by the attraction of gravity, and state by what law its intensity varies.
3. A piece of stone weighs 73 grains in air and only 35 grains in water ; required its specific gravity.
4. In a bydrostatic press the areas of the cylinders are to one another as $1347: 2$, the force pump is worked by means of a lever whose arms are to one another as $23: 2$, the power applied is 120 lbs ; required the upward pressure exerted against the piston in the larger eylinder.
5. In a lever the power arm is 7 feet long, the arm of the weight is 5 inches, the power is 11 lts.; required the weight.
6. Enunciate the principle of the parallelogram of forces, and explain how it is that a force may be more advantageonsly represented by a line of given length than by saying it is equal to a given number of 1 bs ., \&e.
7. Name the different kinds of upright water wheels, explain the difference between them, and give the rule for finding the horse powers of a water wheel.
8. If a closed empty vessel be sunk in water to the depth of 143 feet before it breaks, what was the extreme pressure to the square inch it was capable of sustainiag ?
9. Describe what is meant by the rena contracta of escaping fluids, indicate its position with reference to the orifice of escape, and give the proportion between the area of the aperture and the sectional area of the cenu contracla.
10. An engine of 50 horse power draws a train weighing 60 tons up an incline of $\frac{1}{4}$ in 100 with a uniform velocity of 20 miles per hour; taking atmospheric resistance as usual, what is the friction per ton?

[1I.

1. By means of a lever a certain number of Ibs. Troy attached to the arm of the weight balances the same number of ounces Avoirdupois attached to the arm of the power; required the ratio between the arms of the lever, a pound Troy being to a ponnd Aroirdupois as $5760: 7000$.
2. Enunciate Torricelli's theorem and calculate the velocity with which a liquid spouts from a small orifice in the side of a ressel when the level of the fluid is 24 feet above the centre of the orifice.
3. In a hydrostatic bellows the sectional area of the tube is three-sevenths of an inch and it contains 12 lbs . of water, the area of the board of the bellows is 3.7 square feet; what is the upward pressure exerted against the board of the bellows?
4. Throngh how many feet will a body fall during the 22nd second of its descent?
5. Define what is meant by specific gravily. Give the rule for calculating the specific gravity of a solid not sufficiently heary to sink in water, and calculate the specific gravity of cork from the following data:-
A piece of cork which weighs 20 oz . in air bas attached to it an iron sinker which weighs 18 oz . in air and only 15.73 cz . in water; the united mass weighs 1 oz . in water; required the specific gravity of the cork.
6. What weight would be carried through a space of 7 feet by a power of 5 lbs moving through 40 feet?
7. Define what is meant by the centre of gravity of a body, and explain how it may be experimentally determined in a solid.
8. How many tons of coal per day of ten hours may be raised from a mine of 660 feet in depth by a low pressure engine haring a piston which has an area of 500 inches, and makes 20 strokes of 11 feet each per minnte, the gross pressure of the steam on the boiler being 37 lbs . per square inch?
9. The power arm of a lever is 32 times as long as the arm of the weight, the power is 97 oz .; required the weight.
10. A city is supplied with water throngh a pipe 8 incbes in diameter and 1 mile in length, leading to a reservoir whose height is 140 feet above the remote end of the pipe; what will be the velocity of the water per second, and how much will be discharged in one hour?

IV.

1. Eunnciate the law of decrease in the pressure and density of the air as we ascend into the higher regions of the atmosphere?
2. In a hydrostatic press the scetional areas of the cylinders are to one another as $943: 2$, the force pump is worked by means of a lever whose arms are to one another as 19:3; if the power applied be 87 lbs ., what is the upward pressure exerted against the piston in the larger cylinder?
3. The power arm of a lever is 9 feet long, the arm of the weight is $i 7$ feet long, and the weight is $6 \frac{1}{2} \mathrm{lbs}$; reguired tho power.
4. Explain when a body is said to be in a condition of stable, unstuble or indifferent equilibrium.
5. A train weighing 90 tons is drawn along an incline of 2 in 900 with a uniform velocity of 30 miles per hour; taking friction and utmospheric resistance as usual, what is the horse power of the locomotive:-
1st. If the train is ascending the gradient?
2 nd. If the traia is descending the gradient?
B. A stone is dropt into a mine and is heard to strike the bottom in $11 \frac{1}{2}$ seconds; required the depth of the mine, if sound travels at the rate of $106 \sigma_{3}^{\frac{j}{3}}$ fect per second.
6. State the condition of equilibrium in the differential wheel and axle.
7. What is the weight of the sulphuric acid (speeific gravity 1-841) contained in a rectangular vat 7 feet 4 inches long, 2 feet 5 inches deep, and 3 feet 7 inches wide?
8. At the top of a mountain a barometer indicates a pressure of 21 inches while at the base the pressure is 29.78 inchesthe temperature at the top is $40^{\circ} 70^{\circ}$ Fahr. and that at the base is $70^{\circ} 70^{\circ}$ Fuhr.; required the height of the mountain.
9. A high pressure steam engine raises 200 cubic feet of water per minute from a depth of 80 feet, the piston has an area of 800 inches, and makes 10 strokes per minute of 8 feet each, what is tho pressure of the steam on the boiler?
10. The flood gate of a canal is 10 feet long and 7 feet deep, the water being on one side and level with the top; what is the pressure :-
13t. On the whole gate?
2nd. On the lowest two-sevenths of the gate?
3rd. On the middle threc-sevenths of the gate?
4 th. On the lowest one-ninth of the gate?
11. In a compound lever the arms of the power are 6, 7, and 11 fcet, the arms of the weight are 2,3 , and 5 feet; by means of this combination what power will sustain a weight of 1000 lbs .?
12. Enunciate Mariotte's law, and ascertain what will be the density, volume and elasticity of that amount of atmospheric air, which, under ordinary circumstances, i. e., at the level of the sea or under a pressure of 15 lbs . to the square inch, fills a gallon measure, if it be placed in a piston and subjected to a pressure of 60 lbs . to the square inch.
13. What power moving through 29 feet will carry a weight of 7 lbs. through 70 feet?
14. An engine of 12 horse power gives motion to a forge hammer which weighs 400 lbs . and makes 40 lifts of 3 fect each per minute and at the same time pumps water from a mine 100 feet deep; required the number of cubic feet of water it pumps per hour from the mine.
15. On an inclined plane a power of 341 lbs . acting parallel to the base sustains a weight of $27,900 \mathrm{lbs}$. ; what must be the length of the base in order that the beight may be 11 fect?
16. Enumciate the three laws of motion commonly known as Newton's laws, and state to whom they respectively belong.
17. A piece of sulphur weighs 19 oz . in air and 10 oz . in water, required its specific gravity.
18. A ball is thrown up an incline of 11 in 16 with an initial velocity of 1100 feet per second; required-
1st. To what height it will rise.
3nd. Where it will be at the end of the 20th second.
3rd. In what time it will again reach the ground.
4 th. Its terminal velocity.
5 th. In what other moment of its flight it will have the same velocity as at the end of the 17 tb second of its ascent.
19. Required the pressure exerted against a mill-dam 170 feet long and 16 feet wide, the perpendicular depth of the water being 12 feet.

VI.

1. When the barometer indicates a pressure of 30 inches at the surface of the earth it is observed to indicate a pressure of of only 13.5 inches in a balloon, required the approximate height of the balloon.
2. Gire the chief laws connected with the motion of projectiles. 1st. When they are fired vertically, and 2nd. When they are fired at an angle of elevation.
3. Through how many feet will a body fall in 30 seconds?
4. What is the horse power of a low pressure engine in which the piston has an area of 360 inches and makes 11 strokes of 9 fect each per minute, the gross pressure of the steam on the boiler being 53 lbs . to the square inch ?
5. What must be the area of the aperture in the side of a vessel kept filled with water to a height of 20 fect above the centre of the orifice in order that 15 cubic feet of water may be discharged in one hour?
6. Describe Bramali's IIydrostatic Press, and explain upen what principle in philosophy its action depends.
7. A piece of wood which weighs 19 oz . has attached to it a metal sinker which weighs 27 oz . in air and 22.7 oz . . n water-the united mass weighs 110% in water; requird the specific gravity of the wood.
8. In a compound lever the arms of the power are $7,8,3$, and 10 feet, the arms of the weight are $2,3,4$, and 1 feet, the power is 19 lbs . ; what is the weight?
9. Explain the difference between the common and the forcitg pump, and also state why the former is sometimes called the lifting pump.
10. A train weighing 80 tons is moving at the rate of 30 feet per second when the steam is turned off, how far will it ascend an incline of 3 in 1000, taking friction as usual, and neglecting atmospheric resistance?

VII.

1. What amount of pressure is exerted against one square yarl of an embankment, the upper edge of the square yard being 16 ft .3 in , and the lower edge 19 ft .9 in . below the surface of the water?
2. How much must the pendulum of a clock which loses 1 mi nute in an hour be shortened in order that it may keep correct time?
3. Describe the syphon and give the theory of its action.
4. In a system of eleven movable pulleys worked by a single cord what weight will a power of 27 lbs . sustain?
5. In a hydrostatic press the large cylinder has a sectional area of $6 \frac{1}{\frac{1}{2}}$ feet, the smaller cylinder a sectional area of $2 \frac{1}{6}$ inches, the force pump is worked by means of a lever whose arms are to one another as 19: $1 \frac{1}{2}$; now if a power of 100 lbs . be applied to the extremity of the lever, what upward pressure will be exerted against the piston in the larger cylinder?
6. Describe the differential screw, and give the conditions of equilibrium between the power and weight in the common screw.
7. To what depth may an empty glass vessel capable of sustaining a pressure of 197 lbs. to the square inch be sunk in water before it breaks?
8. In a system of pulleys consisting of eight mavable pulleys worked by eight cords, the apper end of each fastened to the beam the power is $7 \frac{1}{2}$ lbs., what is the weight ?
9. How many gallons of water per hoar will an engine of 7 horse power pump from a mine 67 feet in depth, making the usual allowance for the modulus of the pump?
10. The piston of a low pressure engine nas an area of 400 inches and makes 20 strokes, each eight feet in length, per minute, the boiler evaporates 731 of a cubic foct of water per minute, what is the useful borse power of the engine?

VIII.

1. Explain the difference between the simple and compound pendulum - also what is meant by the " centre of oscillation" and by the "centre of percussion."
2. What velocity will a heavy body falling freely in the latitude of London acquire in one entire second, the London seconds pendulum being $39 \cdot 13$ inches long?
3. In a hydrostatic bellows the tube is filled with water to the height of $13 \frac{1}{2}$ feet; what upward pressure is exerted against the board of the bellows if the area of the latter be 31_{1}^{7} feet ?
4. In a differential screw the exterior screw has a pitch of ${ }^{4}$ 年 of aninch, the interior screw a pitch of \boldsymbol{z}^{3} r of an inch, the power lever is fifty inches long ; what pressure will be exerted by a power of 130 lbs . ?
5. A train weighing 100 tons moves up a gradient having an inclination of $\frac{0}{\circ}$ in 100 with a uniform speed of 20 miles per hour ; taking friction and atmospheric resistance as usual, what is the horse power of the locomotive?
6. When a body has fallen through 2500 feet what velocity has it acquired?
7. Explain what is meant by gaseous diffusion, and show the important influence it has in maintaining tho composition of atmospheric air constant at all places.
8. In a common wheel and axle the radius of the axle is 11 inches and the radius of the wheel 47 in .; what power will, with this machine, sustain a weight of 793 lbs .?
9. A flood gate is 22 feet wide and 20 feet deep, the water being on one side only and level with the top; required the pressure-
1st. A gainst the whole gate. 2nd. Against the lowest three-sevenths. 3rd. Against tho upper four-ninths.
4th. Against the middle three-elevenths.
5th. Against the lowest three-fifths.
10. Give the different rules for finding the specific gravity of liçuids.

1X.

1. In a differential wheel and axle the radii of the axles are 23 and $27^{3} \mathrm{r}$ inches, the radius of the wheel is 90 inches; what weight will be sustained by a power of 7 lbs.?
2 The tube of a hydrostactic bellows is filled with water to the beight of 50 feet ; if the bourd of the bellows has an area of $6 \frac{7}{3}$ feet, what upward pressure is exerted against it?
2. IIow many vibrations per minute will a pendulum 9 yards long make?
4 Gire the principal laws of the descent of bodies on inclined planes.
3. A body has fallen through 3600 feet when another body begins to fall at a point 4000 feet beneath it; through what space will the latter body fall before the first overtakes it?
4. The piston of a steam engine has an area of 440 inches and makes 11 strokes per minute, each $9 \frac{1}{1}$ feet in length, the boiler evaporates 9 of a cubic foot of water per minute; what is the volume of the steam produced per minute and what is the pressure under which it is generated?
5. Give the most important consequences that result from the fact that each atom of a liquid is separately drawn towards the centre of the earth by the force of gravity.
6. What gross load will a horse exerting a traction of 74 lbs . drav on a road whose coefficient of friction is 2_{2}^{1} ?
7. What are the conditions of equilibrium between the power and weight in the inclined plane?
8. Through how many feet must a body fall in order to acquire a velocity of 250 feet per second?

ANSWERS AND REFERENCES TO EXAMINATION PAPERS.

1. H. P. $=228 \cdot 48$ or $105 \cdot 28$
2. Art. 66.
3. 1679 lbs .
4. Arts. 227, 229.
5. $5522 \cdot 34375 \mathrm{lbs}$.
6. $96000 \mathrm{lbs} ., 82500 \mathrm{lbs}$., and $13714 \frac{2}{7}$ lbs.
7. Art. 205.
8. $151 \cdot 2$ tons.
9. Arts. 9, 19, and 20,
10. $18 \mathrm{~min} ., 45 \mathrm{sec}$.

II.

1. H. P. $=161 \cdot 28$ or 38.08 .
2. Arts. 25, 27.
3. $1 \cdot 921$.
4. 929430 lbs .
5. $184 \frac{4}{5} \mathrm{lbs}$.
6. Art. 44.
7. Arts. 339, 341.
8. $62 \cdot 05 \mathrm{lbs} .341$.
9. Arts. 9, 19, and 10.
10. $8 \cdot 425 \mathrm{lbs}$. per ton.
III.
11. Power arm $13 \frac{24}{7 / 5}$ times as great as the arm of the weight.
12. Arts. 25, 26, and 27.
13. $14918 \cdot 4 \mathrm{lbs}$.
14. 688 feet.
15. Arts. 192, 195, and $\cdot 57584$.
16. $28 \frac{1}{2} \mathrm{lbs}$.
17. Arts. $57,58$.
18. 1400 .
19. 194 lbs .
20. Velocity $=6.336$ feet per second.
Quantity-7962.071 cubic feet per hour. . .
21. Art. 212.
22. $259796 \frac{1}{2} \mathrm{lb} 3$.
23. 125^{5}.
24. Art. 62.
25. H. P. $=10616$ or $42 \cdot 16$.
26. 1600 feet.
27. Art. 88.
28. $7307 \cdot 00144$ lbs.
29. $9721 \cdot 2$ feet.
30. $33 \frac{2}{6}$ to the square inch.
31. $15312 \frac{1}{2}$ lbs., ' 7500 lbs ., $6562 \frac{1}{2}$ lbs., and $32131 \frac{1}{6} \dot{2}$ lbs.
32. $64_{7}^{7 / 2} \mathrm{lbs}$.
33. Art. 219, density 4 times as great, volume 1 qt . and elasticity 60 lbs . to the sq. inch.
34. $16 \frac{2}{9} \mathrm{lbs}$.
35. $3340 \frac{1}{5}$ cubic feet.
B. 900 feet.
36. Arts. $255,256,257$.
37. $2 \cdot 111$.
๖. 27500 feet.

At elevation of 17600 fect. 100 seconds. 1100 feet per second. At the end of the 83 rd sec.
10. 1020000 lbs.

1. 19724 feet.
2. Art. 282.
3. 24336 feet.
4. $45 \cdot 36 \mathrm{H} . \mathrm{P}$.
5. ${ }^{1859}$ of an inch.
6. 10406 l lbs.
7. $1 \cdot 303$ ir:ches.
8. Art. 235.
9. 594 lbs .
10. $526933 \frac{1}{3} \mathrm{lbs}$.

VI.

6. Arts. 183 and 182, Note.
7. -618.
8. 3990 lbs .
9. Arts. 233 and 234.
10. $2163 \cdot 4$ feet.

VII.

6. Arts. 129, 126.
7. 454 fect.
8. 1920 lbs .
9. $137913{ }^{3} 7$ gallons.
10. II. P. $=67 \cdot 87$.
VIII.
11. Arts. 301, 302, and 308.
12. $386 \cdot 17$ inches.
13. $3022 \cdot 68672$.
14. $14660165 \cdot 6 \mathrm{lbs}$.
15. $133 \cdot 262$.
16. 400 feet per second.
17. Art. 206.
18. $185 \frac{2}{3} \frac{1}{7} \mathrm{lbs}$.
19. 275000 lbs . $1852044^{4} \mathrm{~g}$ lbs. $54320 \frac{81}{81} \mathrm{Ibs}$. 75000 lbs. 231000 lhs.
20. Art. 196.

IX.

0. Voinme $=339 \cdot 5$ cub. feet. Pres. $=85 \mathrm{lbs}$, the sq. inch.
1. Art. 175.
2. 1776 lbs .
3. Art. 116.
4. $976{ }_{\%}^{2} \mathrm{f}$ feet.

QUESTIONS TO BE ANSWERED ORALLY BY THE PUPIL.
Note.-The numbers following the questions refer to the numbered articles in the work, where the ansuers may be found.

1. What is Natural science? (1)
2. Into what classes are all natural objects divided, and how are these distinguished from each other? (2)
3. How are animals distinguished from vegetables? (3)
4. What is Zoology? (4)
5. What is Botany? (4)
6. What is Mineralogy? (4)
7. What is Astronomy? (4)
8. What is Geology ? (4)
9. What is Chemistry? (4)
10. What is the object of Natural Philosophy? (4)
11. What are the subdivisions of Natural Philosophy ? (5)
12. In what separate forms does matter exist? (6)
13. Define what is meant by the essential properties of matter. (9)
14. Enumerate the essential properties of matter. (10)
15. What is extension? (11)
16. What is impenetrability? Give some illustrations. (12)
17. What is divisibility? (13)
18. Does the property of divisibility belong to masses or to particles of matter or to both? (13)
19. Give some illustrations of the extreme divisibility of matter. (13, Note)
20. What is indestructibility? (14)
21. What is lorosity? (15)
22. What is Compressibility? (16)
23. What is Inertia? (17)
24. If bodies cannot bring themselves to a state of rest, how is it that all bodies moving upon or near the earth soon come to rest? (17, Note)
25. What is elasticity? (18)
26. Name the different kinds of elasticity as applled to solids. (18, Note)
27. What are the accessory properties of matter? (19)
28. Enumerate some of the most important of the accessory properties of matter? (20)
29. What is malleability? Which are the most malleable of metals? (21)
30. What is ductility? Name the most ductile metals. (22)
31. What is tenacity? (23)
32. What is attraction? (24)
33. Enumerate the different kinds of attraction. (25)
34. What is the attraction of gravity? (26)
35. What is the law of variation in the intensity of gravity? (27)
36. Explain what is meant by saying the force of gravity varies inversely as the square of the distance. (23)
37. What is the attraction of cohesion? (29)
38. What is the attraction of adhesion? (30)
39. What is capillary attraction? Give some examples. (31)
40. What is electrical attraction? (32)
41. What is magnetic attraction? (33)
42. What is chemical attraction? (34)
43. What is the derivation of the word Statics? (36)
44. What is the object of the science of Statics? (36)
45. What is the derivation of the word Hydrostatics? (36)
46. What is the object of the science of Hydrostatics? (36)
47. What is the derivation of the word Dynamics? (36)
48. What is the object of the science of Dynamics? (36)
49. What is the derivation of the word Hydrodynamics? (36)
50. What is the object of the sclence of Hydrodynamics? (36)
51. What is the derivation of the word Pneumatics? (36)
52. What is the object of the science of Pneumatics? (36)
53. When is a body said to be in equilibrium? (37)
54. What are statigal torces or pretsures? (38)
55. What are the elements of a force? (33)
56. What are tho diflerent modes of representling a force? (40)

5i. When several forces act upon the same point of a body, how many motlons can they give itr (41)
58. Distinguish between component and resultant forces. (42)
59. If several forces act upon a point in the same straight line and in the same dircetion, to what is their resultant equal? (4:3)
GO When several forces act upon a point in the same stralght line, but in opposite directions, to what is their resultant equal? (43)
61. Enunciats the principle of the parallelogram of forces. (44)
62. When several forces act on a point in any direction wliatever, state How the resultant may bo found. (45)
63. What is the distinction between tho parallelogram of forces and the parallelopiped of forces? (46)
64. What is the resullant of two parallel forces which act on different points of a body, but in the same direction? (47)
65. What is the resultaut of two parallel torces which act on different points of a body and in opposite diroctions? (48)
66. How do we find the resultant of any number of parallel forces? (49)
67. What is a couple? (50)
68. Distinguish between the composition of forces and the resolution of torces. (5t)
69. What is the centre of gravity of a body? (5T)
70. Why is the ceutre of gravity called also the eentre of parallel forees? (55)
71. How may the centre of gravity of a solid body be experimentally determined? (58)
i2 If a body be frec to move in any direction, low will it finally rest with reference to its centre of gravity? ((0)
73. IIow is the stability of a body estimated ! (61)
74. When is a body said to be in a condition of stable, unstable, or indifferent equilibrium? (62)
75. Ilow may the centre of gravity of two separate bodies be found? (G3)
76. What is the object of all mechanical contrivances? (6if)
77. By what law or principle in philosophy is the relative gain or loss of power and velocity in a machine determined? (6i5)
78. Ennnciate the principal of virtual velocities. (G6)
79. What is a machine? (675

80 How many mechanical elements enter into the composition of machinery? (68)
81. Name the primary mechanical elements. (68)
82. Name the secondary mechanical element. (68)
83. From what mechanicas element is tho wheel and axle formed? (69)
84. Of what mechanical element are the wedge and serew moditications? (69)
85. How are levers, cords, \&c., regarded in theoretical meclianics? (\%0)
86. What is a lever? (7I)
87. Uf liow many kinds are levers? (72)
88. Of simple straight levers how many kinds are there? (73)

S9. Upon what does the distinction between the three kinds of levars depend? (73)
90. Give examples of levers of the first class. (i4)
91. How are the fulcrum, power, and welght placed in levers of the first class? (75)
92. How are the fulcrum, power, and weight placed in levers of the second class? (75)
93. Give some examples of levers of the second class. (i5)
94. How are the fulcrum, power, and weight placed in levers of the third class? (76)
35. Give some examples of levers of the third clase. (76)

Y5. In levers of the first class which must be greatest, the power or the weiglit? (76, Note)
97 . In levers of the second class which must be greatest, the power or the weight? (76, Note)
95. In levers of the third class which must be greatest, the power or the weight? (76, Note)
99. What is the arm of the weight? What is the arm of the power? (77)
100. What are the conditions of equilibrium between the power and the weight in the lever? (iT)
101. Deduce formulas for finding the power, the weight, the arm of the power or the arm of the weight when the other three are given. (77)
102. When the arms of the lever are curved or bent, how must their effective lengths be determined? (79)
103. What is a compound lever or composition of levers? (80)
104. Deduce rules tor findiug the power or the weight in a compound lever. (81)
105. Describe the wheel and axle. (82)
106. Why is the wheel and axie sometimes called a perpefual lever? (84)
107. What are the conditions of equilibrium in the wheel and axle? (85)
108. Deduce a set of rules for finding the power, the weight, the radius of the axle or the radius of the wheel when the other three are given. (86)
109. Describe the differential wheel and axle. (87)
110. To what is it, in effect, equivalent? (87)
111. Deduce a set of rules for the differential wheel and axle.
112. In toothed gear how is the ratio between the power and the weight determined? (89)
113. How are axles commonly made to act on wheels? (90)
114. When is wheel work used to concentrate power? Give an example. (92)
115. When is wheel work used to diffuse power? Give an example. (92)
116. What are the conditions of equilibrium in a system of toothed wheels and pinions? (93)
117. What is a pinion? what are leaves? (91)
118. Deduce formulas for finding the power and the weight, in a system of wheels aud axles. (94)
119. Explain what is meant by the hunting cog. (95)
120. Name the different kinds of wheels. (96)
121. Explain the difference between crove, spur, and bevelled gear. (97)

122: Explain for what purpose crown, spur, or bevelled gear is used. (98)
123. When bevelled wheels of different diameters are to be used together show how the sections of the cones of which they are to be frusta are found. (99)
124. What is a pulley? (100)
125. Show that from the pulley itself no mechanical advantgge is derived. (101)
126. Wherein consists the real advantage of the pulley and cord as a mechanical power? (101)
12\%. When is a pulley said to be fixed? (102)
12S. What is a single movable pulley called? (108)
129. What are Spanish Bartons? (103)
13). Explain the meaning of the words sheef, block and tackle. (104)
131. What is the only mechanical advautage derived from the use of a fixed pulley? (105)
132. In a system of pulleys worked by a single cord, what are the conditions of equilihrium? (106)
132. Deduce a set of rules for a system of pulleys worked by a single cord. ($10 \overline{1}$)
134. What are the conditions of equilibrium in a Spanish Barton when the separate cords are attached directly to the beam? (108)
135. What are the conditions of equilibriun when the separate cords are attached to the movable pulleys: (109)
136. Deduce in each of these last two cases a set of rules for finding the ratio between the power and the weight, (110 , and 111)
13\%. If the lincs of direction of the power and weight make with one another an angle greater than 120°, what is the relation between the power and the weight? (112)
138. In theoretical mechanics how is she inclined plane regarded? (113)
139. What are the modes of Indleating the inclination of the plane: (114)
140. In tho inclined plame how may tho power be applied? (115)
141. What are the conditions of equilibrium in the inclined plane? (116)
142. Deduce a set of rules for the inclined plane. (117)
143. What is the wedgo $P(118)$
144. H10w is the wedge worked? (119)
145. What are the conditions of equllibrium in the wedge when it is worked by pressure? (120)
146. In what important particular does the wedge differ from all the other mechanical powers: (120 , Note 1)
14\%. Give some examples of the application of the wedge to practical purposes. (120, Note 2)
148. Deduce a set of rulos for the wedge. (121)
149. Describe tho serew. (122)
150. How is the serew related to an ordinary inclined plane? (122, Note)
151. What is the pitch of the screw? (123)
152. How is the screw commonly worked? (124 and 125)
153. What are the conditions of equilibrimm in the acrew ? (126)
151. Now may the efficiency of the screw as a mechanical puwer be increased? (127)
155. Deduce a set of rules for the common serew. (128)
156. By whom was the differential screw inventedy (129)
157. Upon what princlple does the differential screw act? (129)
158. To what is the differential serew in effect, equivalent? (129)
159. Dednce a set of rules for the differential crew. (130)
160. Describe the endless screw. (131)
161. What are the conditlons of equilibrium in the endless screw? (182)
162. Deduce a set of rules for the cadless screw. (183)
163. How does friction affect the relation between the power and the weight in the mechanical elements? (135)
164. What aro the different kinds of triction" (136)

16is. What is meaut by the coeflecient of friction? (137)
166. What is the cocfficient of sliding friction? (138)
167. What is the coefficlent of friction on railways? (138)
168. What is the cocfficient of friction on good macadamized roads? (138)
169. What is meant by the force of traction? (138)
170. Enumerate the different expedients in comnon use for diminishing friction? (139)
171. Give Conlon̂b's conclusions as regards sliding friction. (139)

- 172, Give Coulomb's conclusious as regards rolling friction. (133)

173. What is the unit of work? (140)
174. How are units of work expended in raising a body found? (141)
175. What are the most important sources of laboring forces? (142)
176. How many units of work are there in one horse power? (142)
177. What is meant by the Table in Art ${ }^{1} 142$
178. What is the true work of the horse per minnte? (142, Note)
179. In moving a carriage along a horizontal plane, for what purpose is work expended?
180. In the case of railway tralns what is the amonnt of friction? (143)
181. In the case of railway trains when does the velocity become uniform?
182. Upon what does the traction of force with which an animal pulls depend ? (146)
183. At what rate per hour must a horse travel to do most work? (146)
184. Upon what does the amount of atmospheric resistance experienced by. a moving body depend? (147)
185. Explain what is meant by this. (14i)
186. What is the amount of atmospheric resistance experienced by a train of medium length moving at the rate of 10 miles per hour? (14S)
15:. If a body be moved along a surface without friction or atmospherie resistance, how may the units of work performed be found? (149)
187. When a train is moved along an inclined plane, how is the work performed by the locomotive found? (15 :);
188. Deduce a set of formulas for finding the horse power, woight, maximum speed, \&c., of trains. (151)
189. What is meaut by the modulus of a machine? (15̄2)
190. Ofmachines for raising water, which has the greatest modulus ? (153)
191. How may the work performed by water falling from a height be found? (154)
192. How is steam converted into a source of laboring force? (155)
193. What are the two principal varieties of the steam engine?) 156)
194. What are the essential parts of the high pressure engine? (157)
195. How does the low pressure differ from the high pressure engine? (158
196. What are the varieties of the low pressure engine? (159)
197. How do these differ from each other? $\{160,161$)
198. In the high pressure engine, at what part of the stroke does atmospheric pressure act against the piston? (162)
199. Give the leading ideas that enter into the construction of tho steam engine. (163)
200. In what respects is the low pressure engine preferable to the nou-condensing cnginc? (164)
201. How are the units of work performed by an engine found? (165)
202. Knowing the pressure of the steam on the boiler, how do we obtain the useful pressure on the piston? (166)
203. Give the rules for finding the H. P., \&c., of engines. (167)
204. What is the real sonrce of work in the steam engine? (168)

2i06. Why is it most adrantageons to employ steam of high pressure? (16S)
207. Give formulas for finding the area of the piston, 1 ength of stroke, pressure, effective evaporation, dcc., in the steam engine. (169)
208, Define what is meant by a fluil. (171)
209. How is the term fluid commonly applied? (172)
210. Into what classes are fluids divided? Name the type of each. (173)
211. To what extent is water compressible ? Alcohol? (173, Note)
212. How to liquids chiefly differ from gases? (174)
213. In what respects do liquids chiefly differ from solids? (175)
214. Give the most important consequences that flow from this fact. (175)
215. How would you illustrate the upward and lateral pressure of liquids? (175, Note)
216. What relation oxists between the respective heights of two liquids of different densities placcd in an inverted syphon? (176)
217. What is the amount of downward pressure exerted by a liquid confined in any versel? (17
218. Hlow would you illustrate this fact? (17, Note.)
219. Show that weight and pressure are not to be confounded with one another. (177, Note2.)
220. What are the weights respectively of a cubic inch, a cubie foot, and a gallon of water, at the temperature of 60° l'ahr.? (178)
221. To what is the pressure exerted by water on a vertical or inelined surface equal? (1\%9)
222. Give a rule for finding the lateral pressure exerted by water. (179)
223. How do you find tho pressure exerted by water against a vertical or inclined surface at a given depth beneath the water? (180).
224. How do you find the presure exerted against any fiaction of a vertical surlace whon the upler edge is levol with the surlaco of the water? (181)
225. Dxplain what is meant by transmiswion of pressure by liquids. (182)
296. Deseribe Bramah's llydrostatic l'ross, and illustrate by a tigure. (183)
25. Fxplain the jrluciple upun which Bramah's l'ress acts. (152 , Nute)
228. For what purposes is Jramalh's l'ress used? (144)
222. How do we find the relation between the power upplied and the pressurc obtaind by Bramah's Press: (185)
230. Describe what is mennt by tho hydrostatic paradox. (186)
231. Show that it is not in reality a paralox. (l8v, Note)
232. Describe the hyilrostatic bellows. (187)
283. Give the rule for finding the upward pressure against the buard of a hydrostatic bellows. (188)
234. When will a body float, sink, or rest in equilibrium in a fluid? (189)
235. What weight of liquid does a tlonting body dixplace? (190)
236. What portion of its weight is lost by a borly immersed iu a liquid? (191)

23i. What is the equecific gravity of a body? (192)
238. What is the standard of comparison for sulids and liquids? (193)
239. What is the standard of comparison for all gasces? (193)
240. Now do we find the specitlc gravity of a so'id lieavier than water? (194)
241. How do we find the specitic gravity of a soljd not sutliciently heavy to sink in water? (195)
242. What is tho first method of finding the specific gravity of a liquid? (196)
243. What is the secoud method given for finding the specifle gravity of a liquid? (196)
244. How is the-specific gravity of a liquid determined by means of the hydrometer? (140)
245. Wescribe tho hyilrometer. (196)

2ff. What difference is there between hydrometers ilesigned for determining the specific gravity of liquids specifically lighter than water, nud those for ascertaining the specitic gravity of liyuids specitically heavier than water? (196)
247. How is the specitic gravity of gases found? (197)
248. How may the weight of a cubic toot of any substanco be found when its specilic gravity is known? (199)
249. Nuw may the solid contents of body be found from its weight? (200)
250. 110 w may the weight of a body be found from its solid contents? (201)
251. What is l'neumatics? (205)
252. What is the derivation of the word at mosphere? (206)
253. What is the atmosplere? (206)
254. To what height does the atmosphere extend? (207)
255. Tilve the exact composition of atmuspleric air. (208)
${ }_{2566}$. What purpose is served by the oxygen in the air? (208, Note)
257. What purpose is served by the nitrogen? (208, Note)
258. Describe the principal properties of carbonic acid. (208, Note)
259. What are the chiet suurces of carbonic acid! (208, Note)
260. What is the maximum and what the minimum a mount of carbonic acid in the air ? (208 , Note)
261. Describe the mode by which the air is kept sufficiently pure to sustain
animal life. (208, Note)
262. Describe the property of gaseous diffusion. (209)
263. Explain how the property of gaseous diffusion affects the composition of the atmosphere. (209, Note)
26t. Upon what dons the amount of aqueous vajor presont in the atmos. phere depend? (210)
265. What is the maximum amount ? What its minimum amount? (210)
266. To what is the bluo color of the sky due ? To what the golden tints of sunsot? (211)
26%. Which of the cesentlal properties of matler belong to the air? (212)
268. How would you illustrate the impenetrability of the air ? (212, Note)
269. How would you illustrate the inertia of the air? (212, Note 2)
270. Why does air possess weight ? (213)
271. What may be taken as the fundamental fact of l'ncumatics ? (213 , Note)
272. What is the weight of luU cubic inches of each of the following gases, viz., oxogen, hydrogen, nitrogen, atmospheric air, carbonic air? (213, Note)
2i3. Give some illustrations of the aggregate woight of the atmosphere (213, Note 2)
254. How is it that the lower strata of air are denser than the upper? (214)

275 . By what law does the deusity of the atmosphere decrease as we ascend? (215)
276. From what does the pressure of the air result? (216)
27. What do we mean by saying the pressure of the air is equal to 15 lbs . to the square inch? (216, Note)
278. If the air were of the same density throughout, to what height would it extend? (217)
279. How is this known? (217)
280. How are permanently elastic gases chiefly distinguished from nonelastic gases? (219)
281. What is meant by permanently elastic gases? (219, Note)
282. Illustrate what is meant by the elasticity of a gas. (220)
283. To what is the elasticity of gases due ? (220, Note)
284. Enunciate Mariotte's law. (221)
285. Illustrate it by a bent tube as in Art. 218. (221, Note)
286. 'To what extent was Mariotte's law true? (222, Note)
287. What is the air-pump? (223)
283. By whom and when was it invented? (224, Note)
289. Describe the exhausting syringe. (225)
200. Draw a sketch of the air-pump, and describe its mode of açtion. (225 , Note)
291. Upon what principle does the air-pump act? (226)
292. Ilow perfect a vacuum can be secured by the air-pump? (226, Note)
243. Describe the condensing syringe. (22i)
294. For what purpose is the air-pump chiefly used? (228)
295. Give some illustrations of the pressure of the air. (228, Note)

296 . Gire some illustrations of the elasticity of the air. (228 Note 2)
297. What is the barometer? (229) I
298. By whom and when was it invented? (229, Note)
299. What are the essential parts of a barometer? (230)
300. What is meant by the Toricellian vacuum? (230, Note)
301. How may the excellency of a barometer be tested? (231)

3^2. What is the cause of the oscillations of the barometer? (232)
303. In what regions of the earth are the oscillations of the barometer mest fitful and extensive? (232, Note)
304. To what regular oscillatious is the barometer subject? (233)
305. At what hours are the two maxima of pressure? (233)
306. At what hours are the two minima of pressure? (233)
307. In what region are the semi-diurnal oscillations greatest? (233, Note)
308. Give some idea of their extent in tropical countries, and explain why they are not observed in our climate. (233, Note)
309. How may the weather to be expected be foretolu by the oscillations in the height of the barometric column? (234)
310. What does a fall in the barometer denote? $(234,11$.
311. What does a rise in the barometer indicate? (234, 111.)
312. What does a sudden change in the h ight of the mercury in the barometer denote? (334,1 V.)
313. What does a steady rise in the columu denote? (234, V.)
314. What does a steady fall in the column denote? (234, vi.)
315. What does a fluctuating state in the feight of the columu of mercury denote? (234, VII.)
316. Give Halley's rule for ascertaining the height of mountains, \&c., by the barometer. (235)
31\%. Give Halley's rule with correction for temperature. (2\%)
318. Givo Leestie's rule. (220)
319. Dercribe the essential parts of a common pump, and illustrate by a diagram. (236)
320. Lixplain why the comnou pump is sometimes called a lifting pump. (236, Note)
321. Explatin the principle upon which the common pump aets. (236, Note)
322. Explain why the lower valve must be within 3 ? fect of the water in the rescrvoir in order that the pmip may act at all times. (236 , Nutv 2)
323. Describe the forcing pump. (23)
324. Describe the cessential parts of a tre engine. (23i, Note)
325. Deseribe the syphon. (233)
326. How is the syphon set in operation? (238, Note 1)
327. Explain upon what principlo the syphon aets. (238, Note 2)
323. When does the conlideration of forces come under the science of statics? (209)
329. What kind of forces are considered in dynamics? (239)
330. Why is statics called a deductive science? (240)
331. Why is dynamics called an inductice or experimental science? (240)
332. What may force be detined to be? (241)
:33. For what purposes is force required! (241)
33. What are the different kinds of toreess as regards duration? (241)
835. What are the different kinds of continued forces? (242)
336. What may motion be detined to be? (243)
337. What are the qualities of motion? (244)
338. What are the diferent kinds of motion? (244)
330. What kind of a motion is produced by au accelerating, constant, or retarding force? (245)
$3 \pm \mathrm{n}$. What is velocity? (246)
341. Of how many kinds is velocity? (246)
342. When is veloclty raid to be unitorm? (246)
343. What is momeutum or motal force? (248)

344: To what are the momenta of bodies proportional? (219)
345. When the velocities of two movmg bodics are equal, to what are their momenta proportional? (249)
346. When the masees of two moving bodies are equal, to what are their momeuta proportional? (249)
34i. When we speak of multiplying a velocity by a weight, what do we mean Y (219, Note)
318. When force is communicated by impact to a body at rest, how long will the body remain at rest? (254)
319. Give the flrst genernl law of motion. (255)

350 . Whose luw is this? (25 T, Note)
351. Give the second law of inotion. (256)
352. Whose law is this? (257, Note)
353. (ive the third law of motion? (257)
354. Whose law is this? (2 ij, Note)

335 . What is relfected motion? (238)
356. What is the angle of incidence? ($2 ; 8$)
357. What is tho argle of reflection? ($25 ; 8$)

35s. What proportion exists between the angle of incidence and the angle
of reflection? (258)
359. How would all bodies fall in a vacume? (259)

330 . Upon what does the resistance encountered by a body moving through the atmosphere depend? (260)
301. What is the nature of the motion of a heary body falling from a height? (201)
362. What velocity is acquired by a heavy body in falling throngh one second? (264)
303. Through how many fect does a body fall during the first second of its descent: (205)
304. Deduce a set of formulas for the descent of bodies freely through space. (266)
365. When a body is projected upwards what is the nature of its motion? (267)
366. Give the formulas for the motion of a body projected upwarde or downwards? (263)
36\%. When a body is descending an incline how is the gravity expended: (269)
368. What are the laws of descent on inclined planes? (2-0)
309. Upon what is the final velocity of a body falling down an incline dependent: (271)
350. What are the laws of descent in curves? (273)
371. What is the brachystochrone?
$3-2$. What is the cycloid? (2.4)
373. Deduce a set of formulas for descent on inclines. $(275,276)$
3.4. What is a projectile? (2-i)
375. What torces iufluence projectiles? (2;8)

3i6. What is the theoretical path of a projectile? (2-8)
3\%. What is a parabola? (278, Note 1)
3.3. Upon what erroneous slippositions is the parabolic theory based? (275, Note 2)
3.9. Show that when a body is projected horizontally forward, the horizontal motion does not interfere with the action of gravity. (279 , Note)
350. What are the three conclusions of the parabolic theory? (280)
331. What is the greatest horizontal range of a projectile? (280 Note)

35:. To what is the velocity of projection speedily reduced, no nuatter what it may lave been originally? (2S1)
3ss. How do you explain this? (281, Note 1)
354. What is the atmospheric resistance encountered by a ball or other projectile having a velocity of 2000 feet per second? (281, Note 2)
38j. When a ball has considerable windage, what is the amount of deflection in its course? (291, Note 3)
836. What are the most important laws regarding the motion of projectiles thrown vertically into the air? (232)
33\%. What are the most important laws regarding the motion of projoctiles thrown at an angle of elevation? (282)
3SS. To what is the explosive force of gunpowder exploded in a cannon equal? (253)
339. With what velocity does exploded gunpowder tend to expand? (283)
390. What is the composition of gunpowder? (283, Note)
291. What is the greatest initial relocity that can be given to a cannon ball? (284)
392. To what is the velocity of a ball of given weight fired with a given charge of powder proportional? ($2 S 4$, Note)
393. To what are the relocities of balls of equal weight fired by the same charge of powder proportional? (285)
391. To what are the velocities of balls of different weight but of the same dimensions fired by equal quantities of powder proportional? (2S6)
395. To what is the depth which a ball penctrates into an obstacle proportional? (2s7)
306. Give the rule for finding the velocity of any shot or shell when its weight and also that of the charge of powder are known? (298)
39.- What is centrifugal force? (289)
398. Why is it sometimes called tangential force? (259, Note)
399. What is centripetal force? (290)
400. When does a body move in a circle? (291)
401. When does a body more in an eclipse? (291)
402. How long enn a rotating mass preserve itself? (202, Note 1)
403. (ive sone exnmalee of the rifiects of centrifugal furce (242, Nole 2)
404. If the velocity nud rudiusare constant, to what is the centrifugal fore proportional? (203)
405. Whou the radius is constant, how does the centrifugal force vary? (294)

4n6. What is the amount of centrifugal force at the equator? (204, Note)
407. How rapidly inust the earth revolve in order that tho centrifugal force at the equator may equal gravity? (294, Note)
408. When the velucity is constant, how does the centrifugal furce vary? (295)
409. When the number of revolutions is constant, to what is the ecutrifugal force proportional? (296)
410. Give a set of formulas for calculating centrifugal force. (20i)
411. Give a rule tor flnding the work accumulated in a moving body. (299)
412. What is a pendulum? (300)
413. What is a simplo pendulun? (3nl)
414. What is a conpound or material penclulum? (362)
415. What is an oscillation or viluration? (303)
416. What is meant by the amplitude of the arc of vibratlon? (304)
417. What is meant by the duration of a vibration? (305)
418. What is meant by tho length of a pendulum? ($3 \cup G)$
419. What is the centre of sukjension? (307)
420. What is the centre of vecillation? (308)
421. What is the centre of percussion? (308 Note)
422. What is meant by saying the centres of oscillation and suspension are interchangeable? (319)
423. H1ow is the duration of a vibration affected by its amplitude? (310)
424. What is meant by saying the vibration of the pendulum is isochronous? (310, Note)
425. What relation exists between tho lengths and times of vibratlons of pendulums? (31t)
426. Give the chief laws of the oscillatlons of the pendulum? (311-316)
427. Why does the seconds pendulum vary in lengtli in different latitudes? (316, Note)
428. What is the length of a seconds pendulum in Canada? (316, Note 2)
429. To what purposes is the pendulum applied \% (317)
430. How is the pendulum used as a meusure of time? (317, Note)
431. How is the pendulum used as a standard of measure: (317 , Note)
432. How do we tlnd the length of a pendulum to vibrate in a given time? (319)
433. 11 ow do we find the number of vibrations lost by a pendulum of given length when tho force of gravity is decreased? (320)
434. How do we tind tho number of vibrations gained by a peudulum of given length when it is shortened? (321)
435. What is the science of Itydrodynanics! (022)
436. Enunciato Torricelli's theorem. (323)
437. In what time does a full vessel empty itself througla an orifice in the bottom? (325)
438. How is the quantity of finid discharged through an orifice of given size found? (326)
439.' What is the vena contracta? (326, Note)
440. What relation exists between the theoretical discharge and the actual discharge? (326, Note)
441. Give the rulo for tinding the velocity and quantity of fluid discharged through an aperture of given size. (327)
442. What is an adjutage? (329)
443. Under what circuinstance is the flow of water through an adjutagi modified: 1328)
444. How does a cylindrical adjutage increase the flow? (329)
445. How do conical adjutages increase tho flow ? $(330,331)$
446. To what height does a jet of water, spouting upward from the bottom of a reservoir, reach?
417. When water spouts from an aperture in the side of a ressel, how is the horizontal distance to which it is thrown found? (333)
448. When a liquid flows through a pipe or channel, which part has the greatest velocity? (335)
449. 110w is the velocity of a stream determined? (336, Note 2)
450. What are the principal varieties of water wheels" (339)
451. In water whecls, when is the greatest mechanical cffect produced? (340)
452. Give the rule for finding the horse powers of upright water wheels. (341)
453. What is a turbine wheel? How does it act? (342)
454. For what purposes are high and low pressure turbines respectively used? (343-5)
455. What are the principal advantages of the turbine over the upright water wheels? (346)
455. What is the origin of all waves or undulations? (34i)
457. Of how many kinds are undulations? (348)
458. What are progressive undulations? (349)
459. What are stationary undulations? (350)
460. What kinds of vibration may be imparted to a stretched string? (352)
461. What is meant by the time of vibretion? (353)
462. What are the chief laws of the transverse vibration of cords? (354)
463. What are nodal points? (355)
464. What are the principal laws that govern the transverse vibrations of rods? (356)
465. How may an elastic plate be made to vibrate? (357)
460. What are nodal lines and nodal tigures? (358-60)
467. What are the laws of vibration of elastic plates? (361)
468. Explain the cause and mode of undulation in liquids. (362)
469. Give the law of reflection of progressive undulations. (363)
470. Explain what is meant by the interference of waves and the phenomena resulting. (364)
471. Describe careftily the phonomena of undulations in an elastic fluid like the air. (366)
472. What are the objects of the science of acoustics? (368)
473. What are sounds? (369)
474. Upon what does the intensity of a sound depend? (3.1)
475. How is the sound affected by the density of the medium in which it is produced? (372)
476. How does the pitch of a sound affect its velocity? (373)
477. How does the velocity of sound in atmospheric air vary? (374)

4i8. What is the velocity of sound in atmospheric air? (375)
479. Give the velocity of sound in several other media. $(376,377)$
480. Upon what does the distance to which sound may be propagated depend? $[378,379]$
481. What is the result of the interference partial or complate, of sonorous Waves? $(380,381)$
482. What laws govern the reflection of sound waves? $(382,383)$
453. What is an echo? (383)
484. What must be the least distance of the reflecting surface in order to produce a perfect echo? (384)
485. What are repeating echoes. (385)
486. Give some examples of remarkable echoes? (386)
487. Explain the construction ol the so called whispering galleries. (387)
488. Name some of the best whispering galleries in the world. (387)
489. Describe the speaking trumpet and explain its mode of action. (388)
490. Describe the ear trumpet and explaiu the principle upon which it acts. (389)
491. What is nojse? (390)
492. What are musical sounds? (301)
493. What are the three elements of a sound? (392)
491. What is tone or pitcli? Upen what does it depend? (393)
495. What is intensity" Upon what does It depend? (3:31)
496. What is the quality or timbre of a sound ? (395)
497. When are sounds said to be in unlson? (396)
498. What is a melody? (39i)
493. What is a chord! (398)
500. What is harmony? (398)

501 . Describe the siren and Savart's toothed wheel and explain their use. (400)
502. Describe the monochord nnd explain its use. (401)
503. Give the relative length of cords and the number of vibratlons re. quired to produce ench note of the gamut. (402)
504. How is the absolute number of vibrations required to produce any given note determined! (403)
50.. Give the number required for each of the notes of the common seale. (404)
506. How do we determine the number of vibrations required for the corresponding notes of higher or lower scales? (405)
507. How do we determine the length of a sonorous vibration? (406)

508: Givo the lengths of the vibrations producing the \mathbb{C} of different seales. (406)
509. What are intervals? (40i)
510. How are musical intervals named? (408)
511. Give the fractional length of the interval between cach two successive notes in the diatonic seale. (408 and 409)
512. What is a major tone? minor tone? semitone? (400)
513. What are diatonic and chromatic semitones? What is a grare cilromatic semitone. What is a comma? (409, Note)
514. What are compound chords? (411)
515. What is the perfect major accord? (411)
516. What is the perfect minor accord? (411)
517. What is the difference between these as regards intervals? (411, Note)
518. Explain what is meant by the transposition of scales? (412)
519. What are sharps and flats, and for what purpose are they employed? (413)
520. What is the cliromatic scale? (414)
521. What is temperament? (415)

52\%. Explain the use of temperament in music. (415)
523. Fxplain the phenomena of beating in musical sounds. (41f)
524. Describe the diapason or tuning fork (417)
202. Classify musical instruments. (418)
526. Deseribe the mode in which wind Instruments are somaded, and name the most important wind instruments. (419)
527. Describe the mode in which stringed instruments are sounded. (420)
523. Describe the different varieties of the drum. (421)
529. Upon what circumstances docs the pitch of the sound produced by a wind instrument depend? (422]
530. What causes the difference of timbre in wind instruments? (422)
531. What are the different mode of produciug sounds in tubes: (423)
533. (ive Bernoulli's laws governing the vibration of air in tubes. (424)
533. Name the several parts that constitute the organ of voice in man. (426)
534. Give tho position and common mane of the larynx. (427)
535. Describe the structure of larynx. (427)
536. What cartilages form the promincuce known as A dam's apple in the front part of the throat? (427)
53\%. Where are the arytenoid cartilages placed? What is their use? (f2\%)
533. Describe the cordæ vocales. What is their position and their attachments? (428)
539. What is the rime glottirlis? What is its slape except during the production of sound? (428)
540. What is the glottis? What the epiglottis? (429)
541. Explain the production of sound in the larynx. (430)
542. Hhastrate the extreme precision with which the will can determice the exact amount of tension of the vocal cords. (431)
543. Explain why a man sings base or tenor while women, girls and boys sing treble. (432)
544. Ilow do vou account for the difference of timbre in voices? (483)
545. Upon what does the loudness of the voice depend? (434)
546. How are voices divided by musicians? (435)
547. Give the extreme number of vibrations of each ciass of voices. (435)
548. What is the range of the voice in speaking? What is the range in singing? (435 Note)
549. Describe the production of sound in the inferior animals? (436)
550. What are the principal parts of the organ of hearing? (437)
551. Name and describe the two parts of the external ear. (438)
552. Name and describe the three parts of the middle ear. (439)
553. Name and describe the threo parts of the internal ear. (440)
554. What is the fenestra ovalis? What the fenestra rotunda? (440)
555. Describe the position and probable use of the semi-cireular canals? $(440,443)$
556. How and where is the auditory nerve distributed in the car? (441)

55\%. Describe the functions of the different parts of the ear. (442)
558. What are the most grave and acute notes that are perceptible to the car? (444)
559. Describe the mechanism of hearing in the different tribes of animals. (445)

$$
\begin{aligned}
& \frac{-1501-105 y^{\prime} 1.006}{\frac{2000}{20} 1} \\
& 1+
\end{aligned}
$$

$$
\begin{aligned}
& \frac{81 / k y d y}{y b s}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{28}{25} \\
& \frac{-\frac{1+0}{202!}}{8+12+1}
\end{aligned}
$$

[^0]: *The radii being proportional to the circumferemens.

[^1]: 4. For a train of whevl work let $\mathrm{P}=$ the poxer, $\mathrm{W}=$ the weishth $\mathrm{t} \mathrm{t}^{\prime} \mathrm{t}^{\prime \prime}=$ the teeth of the wheel, and $11^{\prime} \mathrm{l}^{\prime \prime}=$ the leaves of the pinion.
[^2]: * E2SO is the uumber of feet in one mile.

[^3]: * When the diameter of tho piston is given, its area is found by multiplying the square of half the diameter by $3 \cdot 1416$.

[^4]: Note 1.-The first column gives the pressure in lbs. to the square inch inder which the steam is produced; the second column shows the corresmading temperature, as indicated by Fahrenheit's thermometer; and the Third columin, the volume of the steam compared with the volume of the

[^5]: Fe divide by 144 because a, the area of tho piston, is given in square acies, wale l, the leagth of stroke, is given in feet. To find the cubic teei of cttain we must maitiply tho length or stroke in fe.t by the area of lie Hotur lis oquare fetei; i. ϵ., by $\frac{\tilde{a}}{141}$

[^6]: Note.-The fact that a liquid exerts a downward pressure is self-evident and requires no illustration.

 The lateral pressure of a liquid is shown by its spouting from holes pierced in the side of the vessel in which it is contained.
 The upward pressure is shown by taking a glass cyliuder, open at both shds, and faving one cud accurately ground. A plate of ground ghas i. held to this end by means of a piece of string passing through the cylindel and the closed end of tho instruwent then immersed in water to a sinah

[^7]: * In this and following examples involving the same principle, we make no allowance for the increased pressure at great depths.

[^8]: *That is not iucluding the weight of the bottle itself.

[^9]: Nurs 1.-The impenetratility of atmospheric air is illustrated by various exjeriments, among which are the following:

 1. Jtun inverted tumbler be immersed in water the liquid does not rise is tue interior of the tumbler, because the latter is full of air and the water caniut enter until the air has been displaced.
 i1. If the two boards of a beilows be drawn asunder and while in that pc. + ハin the nozzle of the bcllows be closed, the boards cannot be pressed tugert:-r k.estise tine bellows is full of air.
[^10]: ＊In all cases，when not otherwise directed，use $g=3 \pm \mathrm{ft}$ ．

[^11]: Notr.-In another modification af these lorizontal wheels the water is made to apply at the periphery of tho wheel. Many varielies are patented and highly spoken of as to their effective performavces.

